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Abstract

Bifurcation of interface separation related to cavity nucleation is analyzed for a radially loaded composite sphere
consisting of a rigid inclusion separated from a power law matrix by a uniform, non-linear cohesive zone. Equations for
the spherically symmetric and non-symmetric problems are obtained from a hyperelastic finite strain theory by a
limiting process that preserves non-linear matrix and interface response at infinitesimal strain. A complete solution to
the symmetric problem is presented including bifurcation load, stresses, and evolution of elasto-plastic boundary and
interface separation. An analysis of non-symmetric bifurcation, under symmetric conditions of geometry and loading,
yields the bifurcation load and first non-symmetric mode shape associated with rigid inclusion displacement. An energy
analysis is carried out for both symmetric and non-symmetric problems in order to assess stability of spherically
symmetric states to spherically symmetric and non-symmetric “‘rigid body mode” perturbations.

Results are provided for an interface force law that captures interface failure in normal mode and linear response in
shear mode. For the symmetric problem, (i) there are threshold parameter values above which bifurcation will generally
not occur, (ii) threshold values below which there do not exist equilibria in the post bifurcation regime, (iii) bifurcation
occurs after attainment of the maximum interface strength. For the non-symmetric problem, (i) bifurcation always
occurs, although it can be delayed by interfacial shear, (ii) for the smooth interface, non-symmetric bifurcation occurs
after attainment of the maximum interface strength and always precedes symmetric bifurcation.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Bifurcation problem; Plasticity; Cavity nucleation; Interfacial debonding and decohesion; Inclusion problem

1. Introduction

Cavity nucleation in solid material is generally an ambiguous concept, precisely defined only in the
narrow context of specific materials, problem geometries or solution methodologies. Thus, in early work on
steel, cavity nucleation was seen to be an event associated with separation of an elastic inclusion from the
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generally plastic matrix. Critical loads to precipitate this event were typically determined based on (i) an
energy balance (accounting for interface energy) (Tanaka et al., 1970), (ii) the attainment of a prescribed
interfacial stress (Argon et al., 1975), (iii) a combination of (i) and (ii) (Fisher and Gurland, 1981b). These
theories are ad hoc in the sense that they do not define what precisely happens after the attainment of the
critical load, or they are not readily applicable to anything but the simplest geometries. In a ground-
breaking paper, Needleman (1987) employed the finite element method to study the formation of a cavity at
the interface between an elastic inclusion and a viscoplastic matrix utilizing a non-linear cohesive zone to
affect separation. In that work, cavity nucleation was seen as a process beginning with initial debonding and
ending with complete decohesion (vanishing of tractions across the interface). The stress—strain response for
the composite system analyzed reveals brittle decohesion, i.c., the sudden stress drop at the inclusion matrix
interface within a small interval of strain. Although Needleman does define criteria for cavity nucleation,
these definitions are unrelated to the abrupt unloading of the interface. This is due to the fact that, because
of the symmetry imposed in his formulation, the only critical event is brittle decohesion, which occurs for
only a range of parameter values. The criteria suggested are either dependent on the constitutive model used
to characterize the interface or, are inherently imprecise. For example, physically based exponentially
decaying interface force laws always require that some traction act across the interface so a definition of
nucleation based on complete interfacial decohesion would fail to predict nucleation. Alternatively, a
definition based on initial separation would predict that nucleation would always occur at the onset of any
applied load. Finally, a definition based on the equivalence of plastic volume strain for the composite
system and a comparison voided system requires that one specify the value of plastic volume strain for
equivalence (difficulties with this definition have been pointed out by Needleman (1987)). Probably moti-
vated by the fact that cavities nucleate in steel specimens subject to small overall straining (Rogers, 1960;
Hahn and Rosenfield, 1966; Cox and Low, 1974) all of the work referred to above (with the exception of
Needleman (1987)) was carried out within an infinitesimal framework. The work of Needleman assumed
finite strains although this fact is largely incidental to the basic phenomenon of nucleation, which can occur
in an infinitesimal strain analysis as well since the seat of nucleation is the interface force-separation re-
lation and not finite strain kinematics or even non-linear material response.

Cavity nucleation phenomena in rubber initiated with the work of Ball (1982) on bifurcation of equi-
librium solutions in finite elasticity. The specific application of these results has been carried out for a
number of spherically and rotationally symmetric geometric configurations and material assumptions with
like symmetry constraints assumed to hold in the post bifurcation regime (Horgan and Polignone (1995)
reviews this extensive body of work). Here cavity nucleation is an event coincident with bifurcation of
equilibria and coincides with the sudden appearance of a cavity or, the instantaneous growth of a mi-
crovoid, in previously uniform material. In this context, nucleation is a fundamental material instability
critically dependent on the finite strain framework. It is important to note that Chung et al. (1987) studied
this phenomenon in a sphere of uniform material modeled by the J, flow theory of plasticity. The critical
load that they obtain is unrealistically high although they do comment on the potential significance of stress
concentrators, i.e., inclusions, in obtaining realistic critical loads. Furthermore, they note that bifurcation
at finite load is not possible in the limit of infinitesimal strain plasticity.

The above discussion suggests that it is acceptable to consider the phenomenon of cavity nucleation in
alloys and metal matrix composites within an infinitesimal strain framework provided the inclusion—-matrix
interface energy is small. When this is true the nucleation event, or the critical part of the nucleation
process, occurs when the strains may still be regarded as everywhere infinitesimal. Furthermore, in the
absence of rational definitions of cavity nucleation by interfacial separation, it is desirable to equate the
nucleation event to bifurcation resulting from interface force-separation constitutive relations. This is
because bifurcation points are unambiguous properties of a system and further, because bifurcation more
often than not occurs at a state in the separation process that would be physically reasonable to identify
with nucleation. This approach has been adopted by the author in a series of papers analyzing the bifur-



A.J. Levy | International Journal of Solids and Structures 40 (2003 ) 2535-2561 2537

cation structure of equilibrium solutions in a simple inclusion—interface-matrix system assuming a smooth
interface (Levy, 1997), assuming interfacial shear (Levy, 1998), and accounting for pair interactions (Levy
and Hardikar, 1999). Essentially, it was found that symmetry-preserving bifurcations, which characterize
brittle decohesion, exist only for a limited range of parameter values. However, symmetry-breaking bi-
furcations, which characterize ductile or brittle decohesion, are associated with the rigid displacement of the
inclusion within the matrix cavity, and exist for all parameter values. Interfacial shear can delay symmetry
breaking bifurcations but not eliminate them. Therefore, it makes sense to identify nucleation with sym-
metry-breaking bifurcation and to regard the critical load to initiate them as the nucleation load. In the
work just cited, non-linearity was confined to the interfacial cohesive zone, and linear elastic constituents
were assumed, the direct applicability of those results to metallic material systems was therefore limited.
Recently, Levy (2001, 2002) considered the bifurcation of equilibrium interfacial separation in a finitely
deformed cylindrical inclusion—unbounded matrix system (Levy, 2001) and in a finitely deformed composite
sphere (Levy, 2002). The constituent materials were a rigid inclusion and an incompressible hyperelastic
matrix. The analyses employed well-known radial or spherical symmetric fields to obtain the critical load
for bifurcation to a symmetric mode, and the theory of infinitesimal strain superimposed on a given finite
strain to obtain the critical load to initiate bifurcation to a non-symmetrical mode characterized by a rigid
body displacement of the inclusion within the matrix cavity. These works confirm the validity of infini-
tesimal strain analysis for bifurcation at small interface energy.

In this paper, results applicable to metallic material systems are presented. Specifically, we utilize the
theory developed in Levy (2002) to study bifurcation phenomena associated with inclusion-matrix inter-
facial separation in an infinitesimally deformed composite sphere composed of a rigid inclusion and a
hyperelastic, power law material matrix. The goal is to obtain critical loads for symmetric and non-sym-
metric bifurcation, and related stress and deformation fields, from the finite strain theory by a formal limit
process that preserves non-linear material and interface response at infinitesimal strain. The first part of the
paper concerns the spherically symmetric bifurcation problem while the second treats aspects of the non-
symmetric problem. In both parts, we present an energy analysis for stability, which is similar in some
respects to that employed by Horgan and Pence (1989). Because of the limitations inherent in the theory of
infinitesimal strain superimposed on a given finite strain, the energy analysis for the non-symmetric
problem can only be used to assess stability of spherically symmetric equilibrium states to non-symmetric
“rigid body mode” perturbations.

2. Spherically symmetric equilibrium states
2.1. Some results for the finite strain problem

The spherically symmetric problem of interfacial separation in a composite sphere composed of a rigid
inclusion and power law material matrix may be solved by direct application of the equations governing
infinitesimal strain plasticity. Here we eschew this approach in favor of appropriate linearization of the
finite strain theory to obtain the response at infinitesimal strain. This indirect approach is very efficient
when considering non-symmetrical solutions arising from bifurcation under spherically symmetric condi-
tions of geometry and loading. Below we briefly present the relevant equations needed for the analysis
including expressions for the potential energy of the composite sphere and its derivatives.

Consider a composite sphere B consisting of a rigid inclusion Q embedded in an incompressible hy-
perelastic matrix shell B — Q. A Cartesian coordinate system with origin at the sphere center o has basis
(e1,€2,e3), material point coordinates (pi,ps,p;) and place coordinates (xj,xs,x3). We will need two
spherical coordinate systems with origin at 0. One has physical basis (ez, e, €s), coordinates (R, ©, ®) and
is associated with material points while the other has physical basis (e,, e, e,), coordinates (r, 0, ¢) and is
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associated with places. They are oriented such that ex(© = 0,®) =e,(0 =0, ¢) = e;. Inclusion and matrix
domains are represented by

Q={(R,06,0)|R<(0,R)),0 € (0,m), P € (0,2m)},

B—Q={(R,0,9)|R € (Ry,R,),0 € (0,n), P € (0,27m)}. M
Spherically symmetric deformations are of the form

r=fR), 0=0, =9 (2)
with principal stretches Az = |Ueg|, 1o = |Ueg|, 16 = |Ueg| given by

=22 =f(R)=R/r)}, lo=i=R"S(R)=R"'r, Jo=2=R'f(R)=R"r, (3)

where U (= VF'F) is the right stretch tensor and F is the deformation gradient associated with (2). In (3)
we have used the fact that the incompressibility constraint det U = 1 may be written in the form

R—2f2f/ = 1. (4)
Integration of (4) yields the following expressions for the stretch 4 (= /R = f(R)/R):
13

L+ (%)30»3— 1>] ~[1- (%) —zoﬂ_m, 5)

where 4 is the interface stretch to be determined. Isotropic, incompressible, hyperelastic matrix material
response is characterized, for the deformation (2), by the physical components
el el Gl
T,-rzfl —,—7?57 T :/1 T_ﬁ, T( :l——ﬁ, 6
R a/LR 00 %} a/L@ PP 3 a/hp ( )
where T,,, Ty, T, are physical components of the Cauchy stress tensor T, ¢ is the strain energy density and
7 is hydrostatic pressure. The equilibrium equation divT = 0 has one non-trivial component which, fol-
lowing Abeyaratne and Horgan (1985), may be written in the form

o, 2R, SR
+ N Trr - T,

oR  f(R) f(R)

where use has been made of deformation (2). The boundary conditions are a uniform dead load traction

and may be written as a condition on the radial component of Cauchy stress by employing the well-known
relationship between Piola—Kirchoff stress (S) and Cauchy stress (S = (det F)TF"). The result is

-2
n g—
T,,:o(R—l> =al?, (8)

where ¢ is positive and has units of force per unit area in the reference state. The interface boundary
condition on the inner surface of the matrix is given by

T, = S(r) on ry :f(RO) (9)

The function s° appearing in (9) is the normal interface traction, which we assume is generally dependent on
the ratio of normalized interfacial separation Ao — 1 to a (non-dimensional) characteristic force length
parameter p. For the case of a non-uniform interface (not considered here), s° is dependent on the interface
coordinates 0, ¢ as well.

Substituting (4) and (6) into (7) and integrating the result determines the pressure. There are two un-
known constants (one is from the integration and the other is Jy). By employing the boundary conditions
(8) and (9) these can be readily determined. The interface equation governing 4, is then given by

/’L:

(Too + Tpy) = 0, (7)
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_FMm®:—0+U+d%—UW{QM@+%? DMD(M} do =1, (10)

e (A= 1)

where c is the concentration of inclusion in matrix defined to be ¢ = (Ro/R;)’ and §°(Jo) = s°((4o — 1)/p).
The stress components (7,,, Tpg, T,,) follow from (6) and may be written in the form

* Dw(t “ Dyi(t
T, — W”w+g%:_/ LUOFITIPRY
A

y 17 1-8 "

(11)
RPN
ng = qu = E/LDW(}) + Trr

with w(1) = 6(A7%, 2, 2). Furthermore, Dv(/) means D;w(/), i.e., differentiation of the function that follows
it with respect to its argument (note that D;w(4,) indicates differentiation followed by evaluation at ). The
pressure function (7) is given by

#(A) = 27261(A2 A 0) — / V ﬁ[t&z(tz

A

1) — 726, (172, 0)]dt — A%
A0 2
*26-1(/1*2,/1,/1)+/ m[tc}z(fz,t,t)—t 261 (72, ,8)]dt — §°(2), (12)
where we have employed the shorthand notation

06
o |

A =2

o6
A 92 ~ (72

A ) = S A A —
5 0'2(/L , A, ) O'( y ) 6/12

61273 00) = (13)

="

Note that the stretch at the outer boundary 4, (< 4¢) follows from (5) provided /, is known.
The potential energy of the sphere @ consists of the strain energy of the matrix, the interface energy, and
the potential energy of the loading applied on the outer surface of the sphere

f(Ro)
PR} =4 [ SR SRR AR 4 [ G2 ol ) - RIE (1)

Ro

Note that in (14) the integral for the interface energy has been computed from the work expression
f { far ) - vd4}de, where v is the velocity field and the surface integral is taken over the deformed,
inner matrlx boundary The potential energy ®, normalized with respect to sphere volume ( nR;}), can be
written as a function of interface stretch A,

1o . 2
cB(i) = 3¢(72 — 1) / o0 A AR

e (= 1)

ai3e [ @2z = 3a{{1+ e - D] - 1),

(15)

where use has been made of (3)—(5). Integration by parts applied to the derivative of (15) D, <15 yields the
relation D, @ (/10) = 3cA0/1 ?F, where F is defined in (10) and /; may be written in terms of 20 by (5). Thus,
equilibrium solutions to interface equation (10) render the potential energy stationary. Conversely, inter-
face stretches 4o which make the potential energy stationary are equilibrium solutions to the interface
equation. The second derivative of the potential energy is
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. . S| D 22D, (J. g .
D} ®() = 2)5'D;, @ (Jo) + 3ciq ASW( o) _ “20 GW( ) +2c0 2+ D80 (20) | (16)
-1 (1 -1) Pk

and we say that an equilibrium interface stretch /, is infinitesimally superstable ' or more simply, locally

~

stable when Dﬁocb()yo) > 0, i.e., 49 renders the potential energy a local minimum.
2.2. Basic equations for the power law material matrix

In what follows, we assume matrix material response can be modeled by the incompressible constitutive
relation

2 8

S, —
' T 3 E,

E, (17)
where E is the infinitesimal strain tensor, S is the deviatoric stress tensor defined to be S — 1/3(trS)1 with
tr[-] indicating trace and 1 the unit tensor. The quantities S.q and E,, are the equivalent stress and strain,
respectively, and are defined by

2 3
Eq=\/3E-E, Sq=1/35"Su. (18)

Seq and E.q are such that for uniaxial stress g, S¢q = ¢ and Eq = &, the axial strain. The constitutive relation
(17) must be supplemented by a relationship between Siq and E¢q. In this paper, we assume that uniaxial
behavior is accurately represented by the piecewise smooth, power law relation so that S, and E, are
related by

g,
?_}Eeq7 Eeq<8y>
Sa=19 /g NN (19)
0y<8_q> v Eeg 28y,
'y

where N € [0, 1] is the strain hardening exponent, g, is the yield stress, ¢, is the (infinitesimal) yield strain
and the ratio o, /¢, is the elastic modulus E. The energy density function w defined by w(1) = 6(A%0,2)
and associated with (17) and (19) is given by

% %qu(i), Eeq(4) <y,
w(ld) = 7 20
D=V N s (BYT (20)
2IN+1) 27 N+1 & P e

where the functional dependence of E,, on the stretch 4 needs to be specified for a given deformation. The
derivative Dw(4) follows from (20) and is

yEeq(/l) DEey(4), Eeq(2) <&y,
D () = Seq(A)DEey(4) = gy Y (21)
ay( ‘) > DE(4), Eeq(4) =,

!'In the sense of Truesdell and Noll (1965).
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Now recall the principal stretches (3). Then the infinitesimal radial strain E,. and the infinitesimal cir-
cumferential strain ¢ = Egy = E,, are given by

Ep=lp—1=77-1==20-1)+0(—1)
; (A= 1)+00.— 17, -
8:E99:E¢¢:;L@— 1=1-1.
Note that the constraint of incompressibility in infinitesimal deformation is satisfied since, to a term of
order O(/ — 1)2, trE = 0 as required. By combining (18) and (22) we get

Eeq(2) =2(A—1), DEg(A) =2, (23)

so that the energy density function (21) is completely specified as a function of stretch 4 or circumferential
strain ¢ (=1 —1).

Before Egs. (10)—(12) can be written in terms of strain energy density gradient (21) and (23) we need to
linearize them in an appropriate way so that we maintain non-linear material response at infinitesimal
strain. We can do this because Dy (1) is actually a function of the ratio (4 — 1)/¢, which remains finite for
stretches / near unity. Consider the integral

/ﬂ] e, DW(I) dr
[+l ror -1 211/, (6,7 +1)7 = 1)

which is obtained from the integral in (10) with the substitution I' = (1 — 1)/¢,. Now expand the integral in
a series in ¢, keeping I', I'y finite. Neglecting terms of order O(g,) results in the approximation

1 [T Dw(I)

dr.
3 L‘ro F

A similar result is stated in Chung et al. (1987) in the context of cavity nucleation in a solid sphere. Using
(21)-(23), (10) governing the interface stretch may now be written in the infinitesimal strain form

& 2 (o s (T)
0:F(so,a):—a—|—s9(—) +—/ 2dr, (24)
P 3 ceg /ey r

where g (= 49 — 1) measures both the circumferential strain at the interface and the radial interface dis-
placement discontinuity. Note that we will assume that parameter p is such that the ratio & /p remains finite
in the limit of infinitesimal &. By substituting (19) and (23) into (24) we get the infinitesimal strain version
of the interface equation for the power law material matrix

of &0 i‘l_ E @<1
%<p>+3( ), 6 o
i NN , ‘ ,
S IRTE WS R D DY VP G P (25)
"\ p 3 N & & &y &y
sof & +%ﬁ(1_cN) 2% N, )
"\ p 3N & &y &y

The different functional forms of the equation depend upon whether the matrix shell is fully elastic 2¢) <,
elasto-plastic 2ce) < &, < 2¢ or fully plastic ¢, < 2cey < 2¢ (note that the quantity ce is the circumferential
strain at the outer boundary of the composite sphere). For the case of the non-hardening matrix, take the
limit of (25) as N | 0 to get



2542 A.J. Levy | International Journal of Solids and Structures 40 (2003) 2535-2561

- 4 26
S?(C—O) +—(1—C)E8(), ﬂgla
p 3 &y
) 2 2 2 2
o= S?<8_0)+_0v|:10g<ﬂ)+1_cﬂ:|7 ﬂglgﬂ’ (26)
1% 3 &y &y &y &y
2 2 2
S?<8_0) +_Jv10gc_17 1<ﬁ<ﬂ
p 3 &y &

The spherical components of stress field (S) for infinitesimal strains follow from (11), (21) and (23) by a
similar limit process used to obtain (24). The result is

p E()/ﬁy (27)

&
S% = S</7</7 = Srr +S€q(8_>7

y
where S is given by (19) and we note from (5) that, to a term of order O(4y — 1)2,

e=i—1= (%)380. (28)

2.3. Spherically symmetric bifurcation; stability of equilibria

Egs. (25)—(27) may be used to predict spherically symmetric behavior under increasing load ¢. First, the
critical load required to initiate plasticity at the inner matrix boundary follows from (25), for the power law
matrix and from (26); for the non-hardening matrix provided & = ¢,/2,

o, 2
o:sf(ﬂép> —|—§(1—c)0y. (29)
Note that we are assuming bifurcation of interface separation occurs at a load ¢ greater than that required
to initiate plasticity at the inner matrix surface. The simpler case of bifurcation in an elastic matrix follows
by simply letting N = 1 in the following results. Implicit in (29) are the two limiting cases of void behavior
(s°(-) = 0) in which the critical load increases linearly with yield stress, and rigid interface behavior in which
no amount of load is adequate to initiate yield at the interface.

Bifurcation of equilibrium interfacial separation is governed by F(gy, o) = D, F(&,0) = 0 where the
function F is defined by (25) (or (26)). The solutions of these equations, when they exist, generate bifur-
cation points (¢*, &)). A Taylor series of " about a given bifurcation point is then usually adequate to obtain
the local behavior of the solutions near the point in question. These calculations will not be carried out here
since they yield no information that is not obtainable from a direct numerical determination of the equi-
libria governed by (25) or (26). It is of interest though to examine the bifurcation condition D, F (¢, o) = 0.
For the power law matrix,

&0 4 280

Dso/ps9<;>+§(lc)pE, ;gl,
& 2 po 280 N 2C80 2C80 280

= ={ Dy s | = e - — <1< —,
0=rDuF o/ <p > " 3 & {( &y > e |’ &y &y (30)

o) ~ N o) ~

Dgo/psg<&o> +2p6y(1—cN)<2&0) , l<2cao < 2&0’
p 3 & &y &y &y
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while for the non-hardening matrix,

€0 4 2
DS(]/ﬂS(r)<;> +§(1*C)PE, ggla
N 2 po, 2cgy 2ce 2¢&
=pD, F =< D, ,,s°( = ——<l——73, LIl —, 31
P 2] 'O/ﬂsr < p> + 3 € { gy } gy gy ( )
Dco/ps9<8_0>, 1< X0 20
0 &y &y

Thus, spherically symmetric bifurcation occurs when D, /,s%(¢y/p) < 0 where the equality applies when the
spherical shell is fully plastic and non-hardening (31); and the inequality applies in all other cases, i.e., when
the interfacial separation is on the descending branch of the interface force-separation curve. Now consider
bifurcation condition (30), governing the partially plastic matrix shell

max 21 N
o Dros(F0)+——{<2£F0> _zcﬁro}:o, (32)

gy 37, &y &y

where I'y is g /p and s = s? /Omax> Omax (the interface strength) being a characteristic of the interface force
law. Whether or not solutions to (32) exist determines the spherically symmetric bifurcation characteristics
for a particular system, i.e., the linear elastic matrix shell (N = 1,c € (0, 1)), the power law matrix shell
(N €(0,1),c€(0,1)), the non-hardening matrix shell (N =0,c € (0,1)) and the unbounded matrix
(¢ = 0). The existence of solutions to (32) will generally depend on ¢, N and the ratios ymax/0,, p/¢,. For the
special case of an unbounded non-hardening matrix (N = 0,c = 0), (32) becomes independent of the ratio
p/¢, so that the interface force length parameter (p) cannot influence whether or not bifurcation will occur.
More specifically, consider the simple physically based exponential interface force law of Ferrante et al.
(1982)

Jo—1 Jo—1
S9< 0 > Y - e CoDip, (33)
p p
T — p=0.10
—— p=025
- = p=050
08} =
06}
89 /omax
0.4}t
I AN
0.2 N
N,
~.
\'\-
0 = =
025 1 2 3 a4 5
s5Ag-1

Fig. 1. The interface force law.
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where on,x 1s the interface strength, and dimensionless force length parameter p characterizes the range of
action of the force law (Fig. 1). For the linear elastic matrix (N = 1) (32) and (33) imply that

le_W(_4@_@m%v) (34)

3 3 Omax/ 0y

where W is the multi-valued Lambert W function defined to be the solution y to the equation ye* = x
(Corless et al., 1993). Since W is defined on the domain [—e™!, 00), we require that

4 NPl -1
3(l c) PP €[0,e7]

be satisfied for the existence of bifurcation points which occur in pairs (an entirely analogous situation has
been shown to exist in a planar setting (Levy, 1998)). Note that the critical load at bifurcation follows by
substituting (34) in (25),. Simple solutions to (32) and (33) do not exist for N € [0, 1). However, for the
unbounded (¢ = 0) non-hardening matrix (N = 0) insight into the bifurcation behavior can be obtained by
noting that for this case (32) and (33) imply that

§:f<@ﬂ>, (35)

p o,

where f is the function shown in Fig. 2. The figure indicates that for gy /0, € [0,0.794) no solutions to
(32) and (33) exist so there are no spherically symmetric bifurcations when the matrix shell is partially
plastic. For values omax/0, € [0.794, 00) there are two solutions to (32) and (33) and therefore two bifur-
cation points. Furthermore, as stated previously, only for this case does the force length parameter p not
affect the character of solutions or, the existence of spherically symmetric bifurcations. Another aspect of
behavior is whether spherically symmetric equilibrium solutions exist for the partially plastic, or fully
plastic matrix shell in the post bifurcation regime. This aspect of behavior, as well as others, will be ex-
plored below.

20

10 15
cmw/cy

Fig. 2. The function f(omax/0y).
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An analysis of stability can proceed once the potential energy is written for the infinitesimally deformed
power law matrix sphere. Introduce the quantity I' = (1 — 1)/, = ¢/, in (15) and expand the result in a
series in ¢, retaining only linear terms. The result is

N : ao/sy (I 50/*{»’ )
@(80) = CF_O / W(z) dr + 3cgy/ S(r) (F%)dl" — 3ocey, (36)

& Jess,

where W is given by (20) and where we have assumed that both I' and the ratio ¢,/p are finite. It follows
directly from (36) that

D, & =3cF, D.® =3cD,F, (37)

where F is given by (24), and where pD, F for the hardening matrix is given by (30) and for the non-
hardening matrix by (31). Below we consider the two limiting cases of the elastic matrix (N = 1) and the
non-hardening matrix (N = 0). We assume that the interface law is of the form (33) or, has the properties:
s°(0) =0, Ds"(e/p) has a single maximum on &/p € [0,00), s°(e/p) = Ds’(e0/p) =0, &/p | 0o and
D’s(ey/p) vanishes at two points one of which is at infinity.

The elastic case (N = 1). It follows from (30), (37), and the local stability definition that, for N =1,
equilibrium states are locally stable provided, Ds’(e/p) > —%(1 — ¢)pE. Note that, except for the case
where the line —% (1 — ¢)pE is tangent to the curve Ds?(¢y/p), there are two (bifurcation) points that satisfy
Ds?(¢9/p) = —3(1 — ¢)pE if there is one point that satisfies it (this has been stated another way in the
discussion following (34)). These points bound the branch of unstable equilibrium states (Fig. 3). Note that
the slope Ds?(&y/p) can be negative at stable equilibrium states. If Ds(g/p) > —4% (1 — ¢)pE for all values
of ¢/p then the curves never intersect, there are no bifurcation points and all equilibrium states are stable.
The existence of a pair of distinct bifurcation points is therefore necessary and sufficient for the existence of
unstable equilibrium states.

25
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Fig. 3. Stability behavior. Elastic matrix. F = Ds%(¢y/p), G = —4(1 — ¢)pE/3. ¢ = 0.05, p/e, = 1, Gmax /0, = 5.
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The non-hardening case (N = 0). For this case (31) indicates that equilibrium states are locally stable if

4 2¢
—3 (1= <)k, =<1,
)
2 1 2 2ce 2¢
Ds9<8°) > —gay{—— Cp}, g, (38)
0 a/p & & 8y
0 | 2cgy @
I ~ 8), ~ SV I

where (38); applies when the matrix shell is elastic, (38), applies when the shell is elastic—plastic, and (38);
applies when the shell is fully plastic. Assume that the first bifurcation point occurs when the matrix is
elastic—plastic or fully plastic. Two of the three possible cases are presented as plots of the left-hand side of
(38) and the right-hand side of (38). In Fig. 4a, there are three bifurcation points and four distinct stability
regions. The origin and the first bifurcation point bound a region of stable behavior. The first two bifur-
cation points bound a region of unstable behavior. The third bifurcation point (not visible in Fig. 4a) arises
from the fact that Ds’(¢y/p) vanishes from below as its argument approaches infinity (and therefore must
intersect the right-hand side of (38), before &/p = ¢,/(2¢p)). Thus, the second and third bifurcation points
bound a region of stable states but equilibria lying to the right of the third bifurcation point are unstable.
This must occur prior to the state when the matrix becomes fully plastic. (Note that the matrix becomes
fully plastic when &/p = ¢,/(2cp), which for the data of Fig. 4 is &y/p = 10.) The next case (Fig. 4b) shows
that there is one bifurcation point that divides the response into stable states (to the left of the bifurcation
point) and unstable states (to the right). The third possibility (not shown) is such that Ds(¢y/p) remains
positive throughout the elastic—plastic response of the matrix shell. When the matrix is fully plastic, bi-
furcation will occur when the slope Ds(¢/p) vanishes. Thus, it is possible to have stable equilibrium states
when the sphere is fully plastic but the sphere will lose stability when the interface force law attains its
maximum value. In contrast to the elastic case bifurcation will ultimately always occur.

The case of the hardening matrix will not be given separate treatment. It is similar to the elastic matrix
because the term

1 3
— F -— F
-— G — G
05 5
0 ——
— 1r
”~
/
-05 I /
/ 0 —
/ A
Al /
| /
Ak
l -
15 . : : : . . - . .
2 4 6 8 10 0 2 4 6 8 10
(a) &/P (b) &/P

Fig. 4. Stability behavior. Non-hardening matrix. F = Ds’(&/p), G = RHS of (38). (a) ¢ = 0.05, p/¢, = 1, Gmax/7, = 3/4; (b) ¢ = 0.05,
p/ey =2, Omax/0, = 2.
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in (30); vanishes from below (more slowly than Ds’(¢y/p)) as its argument & /¢, approaches infinity.
Figs. 5 and 6 are obtained from (25) and (26) and depict graphs of normalized boundary traction (¢/0,)

versus normalized interface separation (strain) ¢ /¢, for various values of parameters. The data used in the

— r=5
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10 — . : :
! — N=0
1 —-. N=1
sl . .. N=05
I' — - N=0.25

O 1 1 1 1
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Fig. 6. Load versus strain. » = p/¢, = 1, omax = 30,, 0, = 0.002E, ¢ = 0.0104.
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calculations is taken from Needleman (1987) and corresponds to spheroidized steel (o, = 0.002E,
Omax = 30, ¢ = 0.0104). Fig. 5 shows the effect of normalized force length parameter p/¢, on response for a
hardening coefficient N = 0.1. The domain depicted in the figure is &/¢, € (0, (2¢)™") where the upper
bound is that point where the sphere becomes fully plastic. Clearly increasing the force length parameter
raises the critical load at bifurcation. Note that all curves are bounded by the rigidly bonded interface
solution (¢ /¢, = 0) and by the void solution, which is approached asymptotically as indicated in the figure.
Fig. 6 depicts the response for various values of strain hardening exponent N assuming a force length
ratio p/e, = 1. All curves are bounded by linear elastic response (N = 1) and perfectly plastic response
(N =0). The effect of decreasing the strain-hardening exponent is to decrease the critical load at bifur-
cation. Furthermore, there are two threshold values of N obtainable from (25) and (30). For values of N
greater then 0.874 no bifurcation occurs and the response is the gradual separation of the interface. For N
less then 0.874 but greater then 0.148 bifurcation occurs characterized by the abrupt transition between two
equilibrium interface separation states. For values of N less then 0.148 there are no spherically symmetric
equilibrium solutions after bifurcation which signals the transition to non-symmetric equilibrium states or,
dynamic response. Note that the lack of spherically symmetric equilibria in the post bifurcation regime can
occur when there are two bifurcation points (Fig. 6, N = 0 curve) or, when there is one bifurcation point,
i.e., the curve monotonically decreases from its maximum and approaches a local minimum at infinity
(recall Fig. 4b). Finally, note that Figs. 5 and 6 are essentially plots of applied boundary traction versus
circumferential boundary strain (recall that the circumferential boundary strain is cg).

The evolution of the elasto-plastic boundary may be obtained as follows. Assume that (29) is satisfied
and that the boundary between elastic response and power law response is located at a radius R, with
R, € (Ro,Ry). Then ¢, = ¢,/2 so that, by (25), (or (26),) and (28) we have

3 3N 3
of & (R 2oL LR o B
S”(Zp(R0>>+3ay{N (Ro I|+1-c¢c R , N>0,
3 3 3
of & (R 2 o (B 1o -
Sr<2P(RO)>+3Uy{ Og(Ro AR [ N=0

which are algebraic equations governing the evolution of R, /Ry with ¢, for the hardening and non-hard-
ening matrix, respectively. They may be readily solved once an interface force-separation relation s°(gy/p)
has been prescribed. Figs. 7 and 8 are graphs of (39) for the interface force law (33). Note that in both
figures the range of R,/R, is (l,c"/ 3), i.e., the elasto-plastic boundary lies between the inner and outer
radius of the matrix shell. Fig. 7 shows response for various values of normalized force length parameter
p/¢, and for a hardening coefficient N = 0.1. (All other parameter values are the same as in Figs. 5 and 6.)
For the void, the elasto-plastic boundary evolves continuously with increasing boundary traction ¢ and this
curve is approached by all of the others as the interface separates. The remaining curves indicate a dis-
continuous change in elasto-plastic boundary under increasing load. This phenomenon coincides with the
rapid unloading of the interface and the abrupt increase in the radius of the inner matrix boundary. The
response after this transition corresponds to a material still deforming according to the non-linear power
law. In an actual metallic material, this would not be the case since linear elastic unloading of matrix
material would accompany the sudden reduction in interface traction. Furthermore, with decreasing ratio
p/é, this transition occurs sooner although the initial yield at the inner matrix boundary is delayed. Fig. 8
shows the dependence of elasto-plastic boundary evolution on strain hardening coefficient. Clearly, the
effect of straining hardening is to tend to reduce the destabilizing effects of abrupt unloading of the interface
as noted previously.

The radial stress component in the elastic zone R € (R,, R;) of the partially plastic matrix, with elasto-
plastic boundary at R,, is obtained from (27);, (19) and (23) provided we recall (28) and note that &, = ¢,/2,

(39)
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Fig. 8. Elasto-plastic boundary radius versus load. (Data as in Fig. 6.)
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The circumferential stress component then follows from (27), with S, now taken as a function of R, /R
since 2¢/¢, = (R./R)’. The formulae yield the stress components S,,., Sy in terms of the load ¢ and the radius
R provided they are coupled to the (39). Similarly, the radial and circumferential stress in the plastic zone of
the matrix with elasto-plastic boundary at R, follows from (27),

e (R 3 +2 1 R\ R Vo

"\ 2p \ R, 37N |\ R R) | ’
3 3

of & & % 1 5 N=0

o(5(2)) 2o (2) .

Fig. 9 is a plot of the normalized circumferential stress (Sgp9/0,) at the interface versus normalized boundary
traction (g/0,) for different values of strain hardening coefficient N. As described above, the range of R../R,
used to obtain the curves in Fig. 9 is (1,¢7'/?), i.e., initial application of the load through the point where
the matrix is fully plastic. The initial portion of the curve describes elastic but non-linear response prior to
yield at the interface. This is because of non-linear separation at the interface. After initial yield, the stress
initially increases for all values of the hardening exponent N € [0, 1]. For the values of N (<1) used in the
figure, Syy drops abruptly at bifurcation with the severity of the drop increasing with decreasing hardening
coefficient. This is in contrast to elastic response, where Sy, increases as the interface unloads.

Finally, the displacement field u,.(R) in a matrix with elasto-plastic boundary at R, may be obtained from
the following:

R\ 1 R\’
u,(R):RSZS*R(§> :ES‘,R<E> s (42)

which, due to the constraint of incompressibility, applies in both elastic and plastic zones. Naturally,
displacement (42) must be coupled to (39) in order to obtain it as a function of load .

Sn(R,R.) = (41)
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Fig. 9. Circumferential stress versus load. (Data as in Fig. 6.)
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3. Non-symmetric incremental equilibrium states
3.1. The bifurcation problem

At some stage in the spherically symmetric deformation process just considered, we expect non-sym-
metric deformations to initiate, coincident with the rigid displacement of the inclusion within a matrix
cavity. In Levy (2002), aspects of this problem were analyzed by applying the theory of incremental strain
superposed on a finite deformation, to a composite sphere consisting of a hyperelastic matrix shell which
separates non-linearly from a rigid inclusion. Here we apply some of the results of that work to the in-
finitesimal, initially strained composite sphere consisting of power law matrix material, rigid inclusion and
interface characterized by a non-linear force separation relation. In the subsection that follows this one, we
present an energy analysis of stability of spherically symmetric states to non-symmetrical rigid body mode
perturbations. Throughout, we will maintain the assumption that the interface force law contains an ad-
ditional non-dimensional length parameter of the same order of magnitude as the yield strain. Because we
are dealing with a spherically symmetric initially strained state and a superposed non-symmetrical incre-
mental state which are both infinitesimal, we normalize all strains with respect to either the yield strain or
the interface force length parameter, and take the normalized initially strained state as finite and the
normalized, superposed state as infinitesimal.

Without loss of generality assume that non-symmetrical configurations are characterized by fields that
are independent of longitudinal angle ¢. This assumption is consistent with a rigid inclusion displacement
in the e; direction. The superimposed infinitesimal displacement field may then be written as
u,(x9) = u’e, + uje, where the symbol ¢ indicates that the field is normalized with respect to yield strain e,.
Coupled linear differential equations governing the displacement components u’, « and the incremental
pressure An follow from the incremental equilibrium equations (Truesdell and Noll, 1965) and the in-
compressibility constraint. They are given explicitly in Ogden (1984) for the case of a pressurized spherical
shell, and more recently in Levy (2002) for the radially loaded composite sphere. In both of these cases, the
initially strained state is finite and the matrix is hyperelastic. Now the linearity of the incremental equations
indicates that the solution may be represented by an eigenfunction expansion. The radial displacement v’
and incremental pressure Az are chosen to be even functions of § while angular displacement uj, is chosen to
be an odd function of 0. We can then write the solution in the form of an expansion of Legendre poly-
nomials P,(cos 6),

o0

= Ui(r) + > Ui(r)Py(cos ),

n=1

i r)P(cos ), (43)

oo

Am = IIo(r) + Y I1,(r)P,(cos 0),

n=1

where P/(cos 0) = dP,(cos6)/df. Ogden (1984) has shown that the expansion (43) ultimately reduces the
incremental partial differential equations to a single fourth order equation for U(r) and two other equa-
tions giving V*(r), I1,(r) in terms of it. For the n = 0, 1 modes he has integrated the fourth order equation
exactly. Because we have considered the spherically symmetric » = 0 mode in the previous section here we
focus on the first non-symmetric # = 1 mode. Thus,

Clr
re,B’

rU + (X +3)UF = 4Ub—2c1)/ 4’“7)dz+icz, (44)
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where a dot indicates derivative with respect to coordinate » and f is defined by
A

—Dw(2),

2025 =1) @

which we take to be positive by virtue of the Baker—Ericksen inequalities. The quantity V/*(r) is determined

from

p=

1 .

Vi =5 (U} +207). (45)
Result (44) presumes that the initially strained state is finite. In our case the initially strained spherically
symmetric state is infinitesimal but the normalized state, characterized by ¢/¢, (= (2 —1)/g,), is finite.
Therefore, we can write (44) in the form

1 &/e ~ " ele
Ui +4U; = 12Cir—2—, FU=12C, | ¢ ——2—dt+C 46

U405 = 20l =G [ g c 46)
which, by (21)-(23), can be integrated directly.

In the finite initially strained problem the boundary conditions consist of a spherically symmetric dead
load traction applied to the outer surface of the composite sphere and a configuration dependent interface
traction, s;(—e,) = —s,€, — sg€p, applied to the inner boundary of the composite spherical shell. The ar-
guments of s,,sy are the ratios of the normalized (with respect to inclusion radius) interface displacement
jump components u, b to force length parameter p. (Note that s,(&/p,0) = 5s°(¢y/p) introduced previously.)
As shown in Levy (2002) the boundary conditions can be expressed in terms of the mode multipliers which,
for the n = 1 mode, are

&P T (1) + 2B(2) + 21 0le, Ui (ry) = 0,

- : 3 (7 : 47
&,p(A0)ro Ui (ro) + 26,5(0) U (ro) = 3 / 5Py (cos 0) sin 0d0. (47)
0
For infinitesimal initially strained states, but finite normalized states, (47) assumes the form
I"IUIE(I"I) +2U1£(r1) = 0,
i} L Ui(rg) — w (48)

Blea/ex)ruUf(r) + 2B /5) Ui () = Do/ p,0) > =5 ==,

where f = D(e/ &,)/(12¢/¢,) and we note that the ratio of yield strain to force length parameter is finite
since it is assumed that they are of the same order of magnitude. The quantity w* is the magnitude of a rigid
body displacement in the e; direction and it appears in (48) because the interface force s, depends on the
difference between the inner matrix boundary displacement and the rigid body displacement of the (rigid)
inclusion (for a more detailed description of the kinematics see Levy (2002)). (Note that we are assuming
that the inclusion does not rotate in the superimposed deformation.)

An additional constraint on the rigid body displacement arises from overall rigid body equilibrium of the
inclusion. It can be shown (Levy, 2002) that the single non-trivial equilibrium equation is of the form

/0 [s,P1(cos 0) + syP;(cos )] sin 0dO = 0, (49)

which is valid for finite initially strained states. For infinitesimal initially strained states (49) may be written
as

We
+2Dyp50(0/ p,0) ———— =0, (50)

Ui(ry) — Vi(rg) — w'
Da/pSr(ﬁo/P; 0) IT : 7o =
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where we have used the fact that the ratio of the normalized (with respect to inclusion radius) interface
displacement jump components to force length parameter are
~ 0 . 2 U: . Ut —wE
o) o & Vi) | & Uil =W p o)y
p pop T p "o (51)
ot 0 . Ve _ue
v(ro, 0) _& £ (ro) —w Pl(cos0) + - --
p p o
Note that (51) follows from the fact that the normalized displacement jump components #,? from the
undeformed state to the current configuration arise from the superposition of the deformation ¢, of the
spherically symmetric initially strained state, plus the superposed non-symmetrical deformation
u,/Ro, up/Ro minus the rigid body displacement of the inclusion wy/Ry. In obtaining (51), we have employed
(43) and additionally, we have assumed that initially strained equilibrium states are infinitesimal. Boundary
conditions (48), rigid body equilibrium constraint (50) and general solution (46) may be used to predict
aspects of the n = 1 bifurcation mode and the critical load at which it occurs. In what follows, we consider
two cases, the composite sphere with a smooth interface, and an unbounded matrix allowing for interfacial
shear.
The smooth interface. When the interface is smooth it cannot support shear traction and sy = 0 and s, is
independent of o (in which case we write s.(i/p)). In this case (50) becomes Dy/,s,(e0/p) X
[(Ut(ro) —w*)/ro] = 0 and boundary conditions (48) become homogeneous,

2 Uf(rl) + ZU{’(rl) =0,
roU(ro) + 2U% (rg) = 0.

(52)

The solution (46), together with boundary conditions (52) imply that C, is linearly related to C; and

l/ro M dfl ¢ =0, (53)
ery  [DW(I)]

where an integration by parts has been carried out and we recall that I'g = &y/¢,. It is not hard to show that
for w defined by (20) the integral in (53) is generally non-zero and of one sign. The exception is in the limit
of the non-hardening matrix (N | 0), as the matrix shell becomes fully plastic. This is readily apparent from
the expansion of the integral for the case of a partially plastic power law matrix shell with I', > 1/2 and
CF() < 1/2,

/ro I=23D*(T) il = 3 (CF0>_5/3 - <1>5/3 +3.2*(zv+1)N <1>2/3N_ (ro)‘2/3—N |
ol [Dw(r)]z 200, 2 (2+3N)ag, |\2

Excluding this exceptional case we have that (53) implies that C, and therefore C,, is zero. Then by (46),
U;, and therefore 1y (= Uf), is a constant to be absorbed into the unknown rigid body displacement w*.
The rigid body constraint (50) then becomes

&

D8, (20/p) = 0. (54)

7o

Mode n = 1 bifurcation phenomena characterizing the first non-symmetric mode is therefore governed by
(54). The spherically symmetric bifurcation mode » = 0, which has been analyzed in detail in the first part
of the paper, is governed by

&

D, F (e, 0) % = Ao, (55)

&
0 0
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where Uj is the incremental spherically symmetric mode multiplier, Ao is the incremental loading and
D,,F (&, 0) is given by (30) or (31). Non-symmetrical solutions w* # 0 associated with (54) and (55) exist
provided,

Dayps,(e0/p) = 0, (56)

that is, when the interface force obtains its maximum value. (Note that the eigenmode is the non-symmetric
rigid body displacement w*(cos fe, — sin fey), which is orthogonal to the incremental load as required.) For
an interface force law with s, =s° and s° given by (33) the maximum occurs when & = p so that
5:(1) = omax- Recall that we have shown previously that when the matrix is composed of hardening material
or, when it is non-hardening and not fully plastic, spherically symmetric bifurcation occurs when
Dg/ps,(80/p) < 0. Thus, (56) implies that non-symmetric bifurcation always precedes spherically symmetric
bifurcation unless the material is non-hardening and fully plastic in which case they coincide. Furthermore,
unlike spherically symmetric bifurcation, there is no threshold value of N so that non-symmetric bifurcation
will always occur. Now recall (25) for the power law matrix. The critical load at bifurcation is

4 2
Gmax“”*(lfc)o-yﬁa lgla
3 &y &y
2 1] /20\" 2p 2¢p 2p
= max 29y AF - -1 l —c— ) glg_;
’ ? Jr30V{Nl<8y> - Csy & &, (57)
N
Gmax‘i’gﬁ(l*CN 2_p y lgzﬂgz_p
3N g &y g

For the non-hardening matrix the result is

4 2

O-max‘i’*(l*C)O'yB, igh
3 &y &
2 2 2 2 2

o= Gmax+—0y[10g (—p>+1—c—p], Pic? (58)
3 & &y & &
2 2

Umax+_6ylogc_l7 lgﬂg_p

3 gy g

Because the terms on the right-hand side (57) and (58) are positive we have the fact that non-symmetric
bifurcation always occurs at a value of applied load which is greater than the interface strength. Fig. 10 is a
plot of normalized bifurcation load (¢/0,) versus normalized force length parameter (p/e,) for different
values of strain hardening coefficient N. The data used in the figure coincides with that used in previous
figures, i.e., Omax = 30,, ¢ = 0.0104. The behavior is bounded by the elastic case (N =1) and the non-
hardening case (N = 0). As expected increasing the force length parameter increases the bifurcation load.
Increasing the strain hardening coefficient has the effect of elevating the bifurcation load as well. As is
apparent from (57) and (58) increasing the interface strength also increases the bifurcation load.

The unbounded matrix; interfacial shear. The unbounded matrix is characterized by a vanishing con-
centration ¢. The boundary conditions (48) and the rigid body equilibrium condition (50) remain valid for
this case provided we apply (48), remotely, i.e., as r; T co. If we assume that U? remains bounded as 7, | oo
then (48), and (46); imply that C; = 0. It follows from (46), that

.. . 1
Ui =—-4Cr~, Uj=Crt, U= —§C2’”73 + G. (59)

The interface boundary condition (48), determines C,, which in turn fixes U}, V¥ in terms of C; and wj. The
bifurcation condition is then determined by substituting these values of U, V{* into (50). The result is
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Fig. 10. Critical load versus force length parameter. Smooth interface. o = 30, ¢ = 0.0104.

EiiﬁKl+®Dmm@dm0%+%L—Wﬂme@dm0ﬂ=0, (60)

ro

where « is given by

_ (Sy/p)Dﬁ/psr(go/p’ 0)/4B .
1 - (Sy/p)D,z/pSr(SO/P» 0)/4ﬁ

In this paper, we will assume that at bifurcation the quantity « is so small that it can be neglected in
comparison to unity (so that U} = I = constant). In order to see the consequence of this assumption recall
that when there is no interfacial shear the interface force law is such that s.(g/p) is @ maximum when
&/p =1 which is the bifurcation condition for the smooth interface. Now assume that with interfa-
cial shear present, bifurcation occurs when g/p=1-+0 where 6 is a small parameter. Then
Dy/ps, (1 4+0,0) =0(6), a=0(5) and Dy/,s9(1 +6,0) = O(5). (Note that we are assuming that
Dy/,s-(¢0/p,0) = Dg/ps,(¢0/p), 1.€., that the slope of the force law for spherically symmetric states is equal to
the slope of the force law for the smooth interface.) By neglecting o« we are neglecting terms of order 0(52)
compared to terms of order O(d) in (60). This is consistent with an interfacial shear stiffness of order O()
(see (64)). The rigid body constraint condition then simplifies to

(61)

&

w
[D,;/,,S,~(80/p, O) + 2D17/psl9(80/p7 0)] E = 0; (62)

where C; has been absorbed into wj. Mode n =1 bifurcation phenomena characterizing the first non-
symmetric mode is therefore governed by (62) which is a generalization of (54). Non-symmetric solutions
w? # 0 associated with (55) and (62) exist provided

Dﬁ/psr(go/pv 0) + 2D5/p36(80/p7 0) =0 (63)

with rigid body eigenmode w*(cos fe, — sin Oey).
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To obtain explicit results consider a modification of the normal exponential force-separation law (33) to
account for interfacial shear (Needleman, 1992),

2
u 1 v .
~ ~ _ —i/p
S\ U/ p,v/p) = €0maxy —— =H| — (% s
(@/p.5/p) . (p)

(64)

where interfacial shear parameter 7 ( > 0) is a measure of both the shear stiffness of the interface as well as
the strength of the coupling between the normal and tangential separation modes. The parameters ,,,, and
p retain the same meaning as defined previously. This simple model characterizes non-linear normal sepa-
ration and linear shear slip appropriate for incipient non-symmetrical branching from the principal path of
spherically symmetric equilibrium states.

For the force law (64), bifurcation condition (63) becomes

%

I (65)
0

Critical loads for non-symmetric bifurcation are obtained by substituting (65) into (25), for the power law
matrix, and (26) for the non-hardening matrix. For the power law matrix the result is

4 20(1 42
Tmax (14 20)e™" + 2 Ep(1 +21), w <1,
'y
o X (6)
2, 0 L2004 20) 2p(1 + 21)
Gmax(1+217)e 2'7+§Jy N[<& -1 +1 ’ 1<T’
while for the non-hardening matrix
4 20(1 42
Omax(1 + 2i)e™" + 3 Ep(1 + 2n), w <1,
" y (67)
2 20(1 +2 20(1 +2
O (14 2n)e ™ +3%~[log (M) + 1] 1< 2020
Y

'y

Egs. (66) and (67) extend the smooth interface results (57) and (58) (with ¢ = 0) to account for interfacial
shear. Note that non-symmetric bifurcation always occurs at a critical load that exceeds the interface force
Sr(SZS/p, 0) = O'maX(l + 277)672”'

Fig. 11 is a plot of normalized bifurcation stress (¢/g,) versus normalized force length parameter (p/e,)
for different values of interfacial shear parameter (). The data used in the figure is Gy = 30y, N =0.1
which coincides with that used in previous figures. As expected, the critical load increases with force length
parameter. The effect of interfacial shear parameter on behavior is not as obvious. For the range of p/s,
values depicted in the figure no discernable trend is observed. If this range is substantially increased then the
n =1 curve will cross the 1 = 0,0.1 curves and we will have the result that ultimately, increasing the in-
terfacial shear parameter raises the bifurcation stress. For small values of p/e, (not indicated in the figure)
the opposite trend is observed, i.e., increasing # decreases the bifurcation load. This unphysical result has
been described in Levy (2001, 2002) and is a consequence of the global structure of branches of equilibria
emanating from the principal spherically symmetric one. Essentially those bifurcation points, for which
increasing 1 decreases the critical load, lie on unstable branches which are unreachable by a continuous
increase in load from the undeformed state. The numerical determination of the non-symmetrical branches
of equilibrium states is beyond the scope of this paper. This kind of calculation however has been carried
out in Levy (1998) for the case where the matrix and the inclusion are linear elastic.
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Fig. 11. Critical load versus force length parameter. Unbounded matrix. opmax = 30,, N = 0.1.
3.2. The stability problem

Here we focus on the composite sphere with a smooth interface and the unbounded matrix with in-
terfacial shear (subject to the restriction that « is small). Recall that for these two cases, the n = 1 mode
U:P (cos 0), Vi P{(cos 0) vanishes so that the strain energy of the matrix will be independent of this mode.
We begin by constructing the potential energy associated with a deformed state of the sphere obtained by
subjecting the finite spherically symmetric state to superimposed, infinitesimal spherically symmetric and
non-symmetric rigid body perturbations. The potential energy for the infinitesimally strained power law
matrix will then be obtained by a formal limit process. Now the potential energy @ consists of the strain
energy of the matrix, the interface energy associated with normal separation mode and shear slip mode, and
the potential energy of the loading. The first and third terms on the right-hand side of (14) representing the
strain energy of the matrix and the potential energy of the loading are essentially unchanged provided we
substitute for / the deformation f = f + U, where U, represents the infinitesimal spherically symmetric
perturbation. The interface energy is given by

/ron { /amz) sl —e) - dA} de,

where [v] is the velocity of points on the inner matrix boundary relative to the inclusion [v] =
fe, — wy(cos fe, — sin fey), i.e., the velocity jump at the interface neglecting all modes higher than n = 1.
Note that here a superposed dot indicates time derivative. The potential energy can be written in the final
form

N Aot G(A5 0,07 .
ﬂmww=%meW—u/ 47——}@kﬁdu+m%+%f_mm_u
H+e((otu)* -1 (A7 —=1)

Ao+ug j. _1 ;L _1 o
+3c/ §?(z)zzdz+% {D,;/,,s,< Op ,0 +2Dﬁ//)50<0770>] (Ao +u0)2/ zdz,
(68)
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where uy = Uy(Ry) /Ry is now the normalized spherlcally symmetric perturbation, @y = wy/Ry is the nor-
malized non-symmetrical rlgld body perturbation and ® has been normalized with respect to the sphere
volume 3 nR;. % (Recall that §°(%) = s°((4 — 1)/p) is the normal component of interface force for spheri-
cally symmetrlc states.) ~

It is a straightforward matter to show that values of u,, which render @ stationary for vanishing w,, are
solutions to the equation governing continuing spherically symmetric equilibrium

0 = D,, ®(up, 0)
—aDWw(h) A Dw(Ao)
(4 —1) (o —1)

Jo—1
+2caid + /lo/l%plD,;/ps,< 0 70)
P

Us (o) }

(69)

= 30/1(2)/11_2{ — Ao+

where terms of order O(u2) have been neglected and use has been made of (10) and (3). This equation has
been obtained by Levy (2002) by expanding (10) in a series of small perturbations about 4y. Consider now
the derivative D, @ (uo, @p). By neglecting terms of second order in u, w, we have

- Jo—1 o — 1
Dwoqs(o,wo)zgxg[nﬁ/psr( Op ,0>—|—2D5/p50</h0p ,O)]wo, (70)

so that @ is stationary for all values of w, provided the bracketed quantity in (70) vanishes. This is identical
to the equation governing the rigid body bifurcation mode w, (Levy, 2002).

The second derivatives of @ are required to assess the stability of spherically symmetric equilibrium
states to both spherically symmetric and non-symmetric rigid body perturbations. They are given by

~ o — 1 JoaDiw(Ar)  Aod DL
D2 (0,0) = 3cioi;” [26(728+)~0/l?p_1D,;/pS,</LO ,o) _ ZahDablh) | 2ok Do)

(ig—1) Go—1) |
Duo,woq%(o, 0) = 0, (71)

2,80, 0)—70 [Da/ps,(oT,o) +2D,;/pso< Op oﬂ

Thus, the spherically symmetric equilibrium state characterized by 4 is locally stable if the (non-vanishing)
second derivatives in (71) are positive for all infinitesimal perturbations ug, wy. Note that D2 45(0, 0) given
by (71), is identical to (16) so that D2 A(O 0) > 0 is sufficient to insure local stability to spherically sym-
metric perturbations. (This result follows by specializing (5) to be /13 —1= 0(13 —1).) The condition
DfOO (0,0) > 0 therefore guarantees local stability to non-symmetric I‘lgld body perturbations.

Consider first the smooth interface, sy(%/p,0/p) = 0, s, independent of #. Then stability to non-sym-
metric perturbations requires that

~ Jo—1
Dfood)(0,0) = C’DI;L(Z)D,;/pSr< Op > >0,

i.e., the slope of the interface force-separation curve must be positive. Thus, whereas the existence of un-
stable spherically symmetric equilibrium states to spherically symmetric perturbations (discussed in the first
part of the paper) depends on the interface force law as well as the strain energy of the matrix, the instability
to non-symmetric rigid body perturbations only requires that equilibria reside on the descending branch of
the force-separation law.

2 For the unbounded matrix multiply through by R} to avoid the difficulties arising from R; T oco.
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For the unbounded matrix, we multiply the second derivatives in (71) through by R} (recall footnote 2)
andletc =0, 4; = 1, DW(1l) = 0 (no residual stress). In particular, stability to non-symmetric perturbations
requires that

PR {Dﬁ/,,sr<’“)p_1,o> + 2D5/pS9(A0p_1,0)} > 0.

For the interface force law given by (64), this amounts to requiring that 1o < 1 + p(1 + 2). Thus, the
appearance of unstable, spherically symmetric equilibrium states to non-symmetric perturbations can be
delayed by increasing interfacial shear stiffness (1) but not eliminated.

Results for the infinitesimally deformed power law matrix composite sphere directly parallel those for
the finitely deformed hyperelastic matrix composite sphere. The potential energy for the infinitesimally
deformed composite sphere may be obtained by substituting the variable I' = (4 — 1) /¢, = ¢/¢, in (68) and
expanding in a series in ¢, retaining only terms linear in ¢,. As was done previously, we assume the
quantities I" and ¢,/p are finite for infinitesimal ¢,. The result, which may be compared with (36) the po-
tential energy for spherically symmetric deformations, is given by

@( 7 I'y+u, W(I‘V) To+u, 0 Sy
U, ;) = c(Iy + u,) 5-dI" + 3ce, s F; dI' — 3oce, (Iy + u;)
(

c(To+uy) )
1 1 &y gy 2
+§C[) & D,;/pSr F();,O + 2D,;/pS0 Fo;,o wy, (72)

where u,, w, are perturbations normalized with respect to ¢, and strain energy w is given by (20). It is not
difficult to show that the vanishing of the derivatives D, 45(u€,0) Du,élP(O w,) are equivalent to the
equation for continuing spherically symmetric equilibrium, and the equation governing the rigid body
mode, respectively. The second derivative of (72) D2 ®(0,0) is given by (37),, (30) and (31). The derivative
D2 @(0,0) leads to the local stability condition

Dayps-(e0/p,0) + 2Dy)ps0(20/p, 0) > 0, (73)
which, for the interface force law (64), is satisfied when ¢/p < 1 4 2#.

4. Conclusions

In this paper, we have focused on spherically symmetric and non-symmetric bifurcation and stability
phenomena associated with cavity nucleation by interfacial separation in a power law matrix composite
sphere deforming at infinitesimal strain. The results obtained are applicable for the metallic material matrix
provided a continuum description of the plastically deforming matrix remains valid for the composite
sphere and, if we utilize the results up to initial bifurcation only. Owing to the assumed hyperelastic
constitutive relation, predictions based on this model beyond critical loads are invalid due to the absence of
a linear elastic unloading regime. Treatment of the non-symmetric problem beyond initial bifurcation
would cause additional difficulties, other than the ones already described, owing for the need to employ an
incremental flow theory for non-proportional loading in the post bifurcation regime.

Simple formulae for the critical loads required to initiate spherically symmetric and non-symmetric
bifurcation have been obtained. It is physically reasonable to associate the critical load for non-symmetric
bifurcation with the nucleation load. This is because non-symmetric bifurcation exists for all parameter
values and its attainment signals the onset of unstable spherically symmetric equilibrium states. The li-
nearized bifurcation analysis carried out in the second part of the paper suggests that the non-symmetric
bifurcation point is a pitchfork. A number of global portraits consistent with this are then possible
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including ductile decohesion accompanied by a gradual rigid body displacement of the inclusion and brittle
decohesion accompanied by an abrupt displacement of the inclusion within a larger cavity. Either of these
scenarios, as well as other possibilities, may reasonably be associated with the nucleation event. Further-
more, the critical load (66),, for non-symmetric bifurcation, has many of the properties we normally as-
sociate with nucleation. Namely, a critical load that (i) increases with increasing force length parameter p
and decreasing yield strain g,, (ii) increases with increasing strain-hardening exponent, (iii) has a size effect.
By (iii)) we mean that the inclusion radius enters into the critical load. To see this recall that the interface
force law (33) is a function of (1o — 1)/p and 4y — 1 is the interface displacement normalized with respect to
the inclusion radius (Ry). Then Rop (= 0) is a constitutive characteristic of the interface with the dimensions
of length and p is the ratio of this property and the inclusion radius. Therefore, (66), implies that larger
inclusions will nucleate cavities prior to smaller ones, a fact which has been observed experimentally (Argon
and Im, 1975; Goods and Brown, 1979; Fisher and Gurland, 1981a). Consider now the critical boundary
circumferential strain for the finite sphere with smooth interface. Then &} = ce; = c¢p which is given by
Co/Ry. Associating this quantity with the nucleation strain, we find that &} (i) increases with increasing
characteristic length parameter, (ii) decreases with increasing inclusion radius at fixed concentration and
(ii1) is independent of interface strength and matrix constitutive characteristics. Property (iii), which is not
generally shared by other definitions of nucleation strain, is in large part due to the constraint of incom-
pressibility and the specific geometry and loading considered. These aspects allow for the determination of
the strain up to a multiplicative constant (the interface circumferential strain/normalized interface sepa-
ration ¢y). Furthermore, because nucleation strain is here defined to be that strain at which non-symmetric
deformation initiates it is to be expected that interfacial shear will strongly effect &].

References

Abeyaratne, R., Horgan, C.O., 1985. Initiation of localized plane deformations at a circular cavity in an infinite compressible
nonlinearly elastic medium. J. Elasticity 15, 243-256.

Argon, A.S., Im, J., 1975. Separation of second phase particles in spheroidized 1045 steel, cu-0.6 pct cr alloy, and maraging steel in
plastic straining. Metall. Trans. 6A, 839-851.

Argon, A.S., Im, J., Safoglu, R., 1975. Cavity formation from inclusions in ductile fracture. Metall. Trans. 6A, 825-837.

Ball, J.M., 1982. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. R. Soc. Lond. A 306, 557-611.

Chung, D.-T., Horgan, C.O., Abeyaratne, R., 1987. A note on a bifurcation problem in finite plasticity related to void nucleation. Int.
J. Solids Struct. 23, 983-988.

Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., 1993. Lambert’s W function in Maple. MapleTech 3, 12-22.

Cox, T.B., Low, J.R., 1974. An investigation of the plastic fracture of AISI 4340 and 18 nickel-200 grade maraging steels. Metall.
Trans. 5, 1457-1470.

Ferrante, J., Smith, J.R., Rose, J.H., 1982. Universal binding energy relations in metallic adhesion. In: Georges, J.M. (Ed.),
Microscopic Aspects of Adhesion and Lubrication. Elsevier, Amsterdam, pp. 19-30.

Fisher, J.R., Gurland, J., 1981a. Void nucleation in spheroidized carbon steels. Part 1: experimental. Metal Sci. 15, 185-192.

Fisher, J.R., Gurland, J., 1981b. Void nucleation in spheroidized carbon steels. Part 2: model. Metal Sci. 15, 193-202.

Goods, S.H., Brown, L.M., 1979. The nucleation of cavities by plastic deformation. Acta Metall. 27, 1-15.

Hahn, G.T., Rosenfield, A.R., 1966. Effects of second-phase particles on ductility. Air Force Materials Laboratory Technical Report
AFML-TR-65-409.

Horgan, C.O., Pence, T.J., 1989. Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere.
J. Elasticity 21, 61-82.

Horgan, C.O., Polignone, D.A., 1995. Cavitation in nonlinear elastic solids: a review. Appl. Mech. Rev. 48, 471-485.

Levy, A.J., 1997. On the nucleation of cavities in planar elasticity. Phil. Trans. R. Soc. Lond. A 355, 2417-2458, Erratam: Phil. Trans.
R. Soc. Lond. A 356, (1998) 669-670.

Levy, A.J., 1998. The affect of interfacial shear on cavity formation at an elastic inhomogeneity. J. Elasticity 50, 49-85.

Levy, A.J., Hardikar, K., 1999. The inclusion pair interaction problem with nonlinear interface. J. Mech. Phys. Solids 47, 1477-1508.

Levy, A.J., 2001. A finite strain analysis of cavity formation at a rigid inhomogeneity. J. Elasticity 64, 131-156.

Levy, A.J., 2002. Separation phenomena at the interface of a finitely deformed composite sphere. Int. J. Solids Struct. 39, 5813-5835.



A.J. Levy | International Journal of Solids and Structures 40 (2003 ) 2535-2561 2561

Needleman, A., 1987. A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525-531.

Needleman, A., 1992. Micromechanical modelling of interfacial decohesion. Ultramicroscopy 40, 203-214.

Ogden, R.W., 1984. Non-Linear Elastic Deformations. Ellis Horwood, Chichester.

Rogers, H.C., 1960. The tensile fracture of ductile metals. AIME Trans. 218, 498-506.

Tanaka, K., Mori, T., Nakamura, T., 1970. Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix.
Phil. Mag. 21, 267-279.

Truesdell, C., Noll, W., 1965. The non-linear field theories of mechanics. In: Flugge, S. (Ed.), Encyclopedia of Physics, vol. 111/3.
Springer Verlag, Heidelberg.



	Bifurcation phenomena in the rigid inclusion power law matrix composite sphere
	Introduction
	Spherically symmetric equilibrium states
	Some results for the finite strain problem
	Basic equations for the power law material matrix
	Spherically symmetric bifurcation; stability of equilibria

	Non-symmetric incremental equilibrium states
	The bifurcation problem
	The stability problem

	Conclusions
	References


