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Abstract

Bifurcation of interface separation related to cavity nucleation is analyzed for a radially loaded composite sphere

consisting of a rigid inclusion separated from a power law matrix by a uniform, non-linear cohesive zone. Equations for

the spherically symmetric and non-symmetric problems are obtained from a hyperelastic finite strain theory by a

limiting process that preserves non-linear matrix and interface response at infinitesimal strain. A complete solution to

the symmetric problem is presented including bifurcation load, stresses, and evolution of elasto-plastic boundary and

interface separation. An analysis of non-symmetric bifurcation, under symmetric conditions of geometry and loading,

yields the bifurcation load and first non-symmetric mode shape associated with rigid inclusion displacement. An energy

analysis is carried out for both symmetric and non-symmetric problems in order to assess stability of spherically

symmetric states to spherically symmetric and non-symmetric ‘‘rigid body mode’’ perturbations.

Results are provided for an interface force law that captures interface failure in normal mode and linear response in

shear mode. For the symmetric problem, (i) there are threshold parameter values above which bifurcation will generally

not occur, (ii) threshold values below which there do not exist equilibria in the post bifurcation regime, (iii) bifurcation

occurs after attainment of the maximum interface strength. For the non-symmetric problem, (i) bifurcation always

occurs, although it can be delayed by interfacial shear, (ii) for the smooth interface, non-symmetric bifurcation occurs

after attainment of the maximum interface strength and always precedes symmetric bifurcation.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cavity nucleation in solid material is generally an ambiguous concept, precisely defined only in the

narrow context of specific materials, problem geometries or solution methodologies. Thus, in early work on

steel, cavity nucleation was seen to be an event associated with separation of an elastic inclusion from the
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generally plastic matrix. Critical loads to precipitate this event were typically determined based on (i) an

energy balance (accounting for interface energy) (Tanaka et al., 1970), (ii) the attainment of a prescribed

interfacial stress (Argon et al., 1975), (iii) a combination of (i) and (ii) (Fisher and Gurland, 1981b). These

theories are ad hoc in the sense that they do not define what precisely happens after the attainment of the
critical load, or they are not readily applicable to anything but the simplest geometries. In a ground-

breaking paper, Needleman (1987) employed the finite element method to study the formation of a cavity at

the interface between an elastic inclusion and a viscoplastic matrix utilizing a non-linear cohesive zone to

affect separation. In that work, cavity nucleation was seen as a process beginning with initial debonding and

ending with complete decohesion (vanishing of tractions across the interface). The stress–strain response for

the composite system analyzed reveals brittle decohesion, i.e., the sudden stress drop at the inclusion matrix

interface within a small interval of strain. Although Needleman does define criteria for cavity nucleation,

these definitions are unrelated to the abrupt unloading of the interface. This is due to the fact that, because
of the symmetry imposed in his formulation, the only critical event is brittle decohesion, which occurs for

only a range of parameter values. The criteria suggested are either dependent on the constitutive model used

to characterize the interface or, are inherently imprecise. For example, physically based exponentially

decaying interface force laws always require that some traction act across the interface so a definition of

nucleation based on complete interfacial decohesion would fail to predict nucleation. Alternatively, a

definition based on initial separation would predict that nucleation would always occur at the onset of any

applied load. Finally, a definition based on the equivalence of plastic volume strain for the composite

system and a comparison voided system requires that one specify the value of plastic volume strain for
equivalence (difficulties with this definition have been pointed out by Needleman (1987)). Probably moti-

vated by the fact that cavities nucleate in steel specimens subject to small overall straining (Rogers, 1960;

Hahn and Rosenfield, 1966; Cox and Low, 1974) all of the work referred to above (with the exception of

Needleman (1987)) was carried out within an infinitesimal framework. The work of Needleman assumed

finite strains although this fact is largely incidental to the basic phenomenon of nucleation, which can occur

in an infinitesimal strain analysis as well since the seat of nucleation is the interface force-separation re-

lation and not finite strain kinematics or even non-linear material response.

Cavity nucleation phenomena in rubber initiated with the work of Ball (1982) on bifurcation of equi-
librium solutions in finite elasticity. The specific application of these results has been carried out for a

number of spherically and rotationally symmetric geometric configurations and material assumptions with

like symmetry constraints assumed to hold in the post bifurcation regime (Horgan and Polignone (1995)

reviews this extensive body of work). Here cavity nucleation is an event coincident with bifurcation of

equilibria and coincides with the sudden appearance of a cavity or, the instantaneous growth of a mi-

crovoid, in previously uniform material. In this context, nucleation is a fundamental material instability

critically dependent on the finite strain framework. It is important to note that Chung et al. (1987) studied

this phenomenon in a sphere of uniform material modeled by the J2 flow theory of plasticity. The critical
load that they obtain is unrealistically high although they do comment on the potential significance of stress

concentrators, i.e., inclusions, in obtaining realistic critical loads. Furthermore, they note that bifurcation

at finite load is not possible in the limit of infinitesimal strain plasticity.

The above discussion suggests that it is acceptable to consider the phenomenon of cavity nucleation in

alloys and metal matrix composites within an infinitesimal strain framework provided the inclusion–matrix

interface energy is small. When this is true the nucleation event, or the critical part of the nucleation

process, occurs when the strains may still be regarded as everywhere infinitesimal. Furthermore, in the

absence of rational definitions of cavity nucleation by interfacial separation, it is desirable to equate the
nucleation event to bifurcation resulting from interface force-separation constitutive relations. This is

because bifurcation points are unambiguous properties of a system and further, because bifurcation more

often than not occurs at a state in the separation process that would be physically reasonable to identify

with nucleation. This approach has been adopted by the author in a series of papers analyzing the bifur-
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cation structure of equilibrium solutions in a simple inclusion–interface-matrix system assuming a smooth

interface (Levy, 1997), assuming interfacial shear (Levy, 1998), and accounting for pair interactions (Levy

and Hardikar, 1999). Essentially, it was found that symmetry-preserving bifurcations, which characterize

brittle decohesion, exist only for a limited range of parameter values. However, symmetry-breaking bi-
furcations, which characterize ductile or brittle decohesion, are associated with the rigid displacement of the

inclusion within the matrix cavity, and exist for all parameter values. Interfacial shear can delay symmetry

breaking bifurcations but not eliminate them. Therefore, it makes sense to identify nucleation with sym-

metry-breaking bifurcation and to regard the critical load to initiate them as the nucleation load. In the

work just cited, non-linearity was confined to the interfacial cohesive zone, and linear elastic constituents

were assumed, the direct applicability of those results to metallic material systems was therefore limited.

Recently, Levy (2001, 2002) considered the bifurcation of equilibrium interfacial separation in a finitely

deformed cylindrical inclusion–unbounded matrix system (Levy, 2001) and in a finitely deformed composite
sphere (Levy, 2002). The constituent materials were a rigid inclusion and an incompressible hyperelastic

matrix. The analyses employed well-known radial or spherical symmetric fields to obtain the critical load

for bifurcation to a symmetric mode, and the theory of infinitesimal strain superimposed on a given finite

strain to obtain the critical load to initiate bifurcation to a non-symmetrical mode characterized by a rigid

body displacement of the inclusion within the matrix cavity. These works confirm the validity of infini-

tesimal strain analysis for bifurcation at small interface energy.

In this paper, results applicable to metallic material systems are presented. Specifically, we utilize the

theory developed in Levy (2002) to study bifurcation phenomena associated with inclusion–matrix inter-
facial separation in an infinitesimally deformed composite sphere composed of a rigid inclusion and a

hyperelastic, power law material matrix. The goal is to obtain critical loads for symmetric and non-sym-

metric bifurcation, and related stress and deformation fields, from the finite strain theory by a formal limit

process that preserves non-linear material and interface response at infinitesimal strain. The first part of the

paper concerns the spherically symmetric bifurcation problem while the second treats aspects of the non-

symmetric problem. In both parts, we present an energy analysis for stability, which is similar in some

respects to that employed by Horgan and Pence (1989). Because of the limitations inherent in the theory of

infinitesimal strain superimposed on a given finite strain, the energy analysis for the non-symmetric
problem can only be used to assess stability of spherically symmetric equilibrium states to non-symmetric

‘‘rigid body mode’’ perturbations.

2. Spherically symmetric equilibrium states

2.1. Some results for the finite strain problem

The spherically symmetric problem of interfacial separation in a composite sphere composed of a rigid

inclusion and power law material matrix may be solved by direct application of the equations governing

infinitesimal strain plasticity. Here we eschew this approach in favor of appropriate linearization of the
finite strain theory to obtain the response at infinitesimal strain. This indirect approach is very efficient

when considering non-symmetrical solutions arising from bifurcation under spherically symmetric condi-

tions of geometry and loading. Below we briefly present the relevant equations needed for the analysis

including expressions for the potential energy of the composite sphere and its derivatives.

Consider a composite sphere B consisting of a rigid inclusion X embedded in an incompressible hy-

perelastic matrix shell B� X. A Cartesian coordinate system with origin at the sphere center o has basis

ðe1; e2; e3Þ, material point coordinates ðp1; p2; p3Þ and place coordinates ðx1; x2; x3Þ. We will need two

spherical coordinate systems with origin at o. One has physical basis ðeR; eH; eUÞ, coordinates ðR;H;UÞ and
is associated with material points while the other has physical basis ðer; eh; euÞ, coordinates ðr; h;uÞ and is
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associated with places. They are oriented such that eRðH ¼ 0;UÞ ¼ erðh ¼ 0;uÞ ¼ e3. Inclusion and matrix

domains are represented by

X ¼ fðR;H;UÞ jR 2 ð0;R0Þ;H 2 ð0; pÞ;U 2 ð0; 2pÞg;
B� X ¼ fðR;H;UÞ jR 2 ðR0;R1Þ;H 2 ð0; pÞ;U 2 ð0; 2pÞg:

ð1Þ

Spherically symmetric deformations are of the form

r ¼ f ðRÞ; h ¼ H; u ¼ U ð2Þ
with principal stretches kR ¼ jUeRj, kH ¼ jUeHj, kU ¼ jUeUj given by

kR ¼ k�2 ¼ f 0ðRÞ ¼ ðR=rÞ2; kH ¼ k ¼ R�1f ðRÞ ¼ R�1r; kU ¼ k ¼ R�1f ðRÞ ¼ R�1r; ð3Þ
where U ð¼

ffiffiffiffiffiffiffiffiffi
FTF

p
Þ is the right stretch tensor and F is the deformation gradient associated with (2). In (3)

we have used the fact that the incompressibility constraint det U ¼ 1 may be written in the form

R�2f 2f 0 ¼ 1: ð4Þ
Integration of (4) yields the following expressions for the stretch k ð¼ r=R ¼ f ðRÞ=RÞ:

k ¼ 1

"
þ R0

R

� �3

ðk3
0 � 1Þ

#1=3
¼ 1

�
� r0

r

� �3
ð1� k�3

0 Þ
	�1=3

; ð5Þ

where k0 is the interface stretch to be determined. Isotropic, incompressible, hyperelastic matrix material
response is characterized, for the deformation (2), by the physical components

Trr ¼ kR
or̂r
okR

� p̂p; Thh ¼ kH
or̂r
okH

� p̂p; Tuu ¼ kU
or̂r
okU

� p̂p; ð6Þ

where Trr; Thh; Tuu are physical components of the Cauchy stress tensor T, r̂r is the strain energy density and

p̂p is hydrostatic pressure. The equilibrium equation divT ¼ 0 has one non-trivial component which, fol-

lowing Abeyaratne and Horgan (1985), may be written in the form

oTrr
oR

þ 2f 0ðRÞ
f ðRÞ Trr �

f 0ðRÞ
f ðRÞ ðThh þ TuuÞ ¼ 0; ð7Þ

where use has been made of deformation (2). The boundary conditions are a uniform dead load traction

and may be written as a condition on the radial component of Cauchy stress by employing the well-known

relationship between Piola–Kirchoff stress (S) and Cauchy stress ðS ¼ ðdet FÞTF�TÞ. The result is

Trr ¼ r
r1
R1

� ��2

¼ rk�2
1 ; ð8Þ

where r is positive and has units of force per unit area in the reference state. The interface boundary

condition on the inner surface of the matrix is given by

Trr ¼ s0r on r0 ¼ f ðR0Þ: ð9Þ

The function s0r appearing in (9) is the normal interface traction, which we assume is generally dependent on

the ratio of normalized interfacial separation k0 � 1 to a (non-dimensional) characteristic force length

parameter q. For the case of a non-uniform interface (not considered here), s0r is dependent on the interface

coordinates h;u as well.

Substituting (4) and (6) into (7) and integrating the result determines the pressure. There are two un-

known constants (one is from the integration and the other is k0). By employing the boundary conditions
(8) and (9) these can be readily determined. The interface equation governing k0 is then given by
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0 ¼ F ðk0; rÞ ¼ �r þ ½1þ cðk3
0 � 1Þ
2=3 ŝs0r ðk0Þ

(
þ
Z k0

½1þcðk3
0
�1Þ
1=3

DŵwðkÞ
ðk3 � 1Þ

dk

)
; k0 P 1; ð10Þ

where c is the concentration of inclusion in matrix defined to be c ¼ ðR0=R1Þ3 and ŝs0r ðk0Þ ¼ s0r ððk0 � 1Þ=qÞ.
The stress components ðTrr; Thh; TuuÞ follow from (6) and may be written in the form

Trr ¼
Z k

k1

DŵwðtÞ
1� t3

dt þ k�2
1 r ¼ �

Z k0

k

DŵwðtÞ
1� t3

dt þ ŝs0r ðk0Þ;

Thh ¼ Tuu ¼ 1

2
kDŵwðkÞ þ Trr

ð11Þ

with ŵwðkÞ ¼ r̂rðk�2; k; kÞ. Furthermore, DŵwðkÞ means DkŵwðkÞ, i.e., differentiation of the function that follows

it with respect to its argument (note that Dkŵwðk0Þ indicates differentiation followed by evaluation at k0). The

pressure function ðp̂pÞ is given by

p̂pðkÞ ¼ k�2r̂r1ðk�2; k; kÞ �
Z k

k1

2

tð1� t3Þ ½tr̂r2ðt�2; t; tÞ � t�2r̂r1ðt�2; t; tÞ
dt � k�2
1 r

¼ k�2r̂r1ðk�2; k; kÞ þ
Z k0

k

2

tð1� t2Þ ½tr̂r2ðt�2; t; tÞ � t�2r̂r1ðt�2; t; tÞ
dt � ŝs0r ðk0Þ; ð12Þ

where we have employed the shorthand notation

r̂r1ðk�2; k; kÞ ¼ or̂r
ok1







k1¼k�2

; r̂r2ðk�2; k; kÞ ¼ r̂r3ðk�2; k; kÞ ¼ or̂r
ok2







k1¼k

: ð13Þ

Note that the stretch at the outer boundary k1 (< k0) follows from (5) provided k0 is known.

The potential energy of the sphere U consists of the strain energy of the matrix, the interface energy, and

the potential energy of the loading applied on the outer surface of the sphere

Uff ðR0Þg ¼ 4p
Z R1

R0

r̂rðf 0ðRÞ; f ðRÞ; f ðRÞÞR2 dRþ 4p
Z f ðR0Þ

ŝs0r ðzÞz2 dz� 4pr½f ðR1Þ � R1
R2
1: ð14Þ

Note that in (14) the integral for the interface energy has been computed from the work expressionR t1
t0
f
R
ofðXÞ sIð�erÞ � vdAgdt, where v is the velocity field and the surface integral is taken over the deformed,

inner matrix boundary. The potential energy bUU, normalized with respect to sphere volume ð4
3
pR3

1Þ, can be
written as a function of interface stretch k0,

cbUUðk0Þ ¼ 3cðk3
0 � 1Þ

Z k0

½1þcðk3
0
�1Þ
1=3

r̂rðk�2; k; kÞk2

ðk3 � 1Þ2
dk þ 3c

Z k0

ŝs0r ðzÞz2 dz� 3rf½1þ cðk3
0 � 1Þ
1=3 � 1g;

ð15Þ

where use has been made of (3)–(5). Integration by parts applied to the derivative of (15) Dk0
bUU, yields the

relation Dk0
bUUðk0Þ ¼ 3ck2

0k
�2
1 F , where F is defined in (10) and k1 may be written in terms of k0 by (5). Thus,

equilibrium solutions to interface equation (10) render the potential energy stationary. Conversely, inter-
face stretches k0 which make the potential energy stationary are equilibrium solutions to the interface

equation. The second derivative of the potential energy is
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D2
k0
bUUðk0Þ ¼ 2k�1

0 Dk0
bUUðk0Þ þ 3ck2

0

Dkŵwðk0Þ
k3
0 � 1

"
� ck2

0Dkŵwðk1Þ
k2
1ðk

3
1 � 1Þ

þ 2cr
k2
0

k5
1

þ Dk0 ŝs
0
r ðk0Þ

#
; ð16Þ

and we say that an equilibrium interface stretch k0 is infinitesimally superstable 1 or more simply, locally

stable when D2
k0
bUUðk0Þ > 0, i.e., k0 renders the potential energy a local minimum.

2.2. Basic equations for the power law material matrix

In what follows, we assume matrix material response can be modeled by the incompressible constitutive

relation

S0 ¼
2

3

Seq
Eeq

E; ð17Þ

where E is the infinitesimal strain tensor, S0 is the deviatoric stress tensor defined to be S� 1=3ðtrSÞ1 with

tr½�
 indicating trace and 1 the unit tensor. The quantities Seq and Eeq are the equivalent stress and strain,

respectively, and are defined by

Eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
E � E

r
; Seq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
S0 � S0

r
: ð18Þ

Seq and Eeq are such that for uniaxial stress r, Seq ¼ r and Eeq ¼ e, the axial strain. The constitutive relation
(17) must be supplemented by a relationship between Seq and Eeq. In this paper, we assume that uniaxial

behavior is accurately represented by the piecewise smooth, power law relation so that Seq and Eeq are

related by

Seq ¼

ry

ey
Eeq; Eeq 6 ey ;

ry
Eeq

ey

� �N

; Eeq P ey ;

8>><>>: ð19Þ

where N 2 ½0; 1
 is the strain hardening exponent, ry is the yield stress, ey is the (infinitesimal) yield strain

and the ratio ry=ey is the elastic modulus E. The energy density function ŵw defined by ŵwðkÞ ¼ r̂rðk�2; k; kÞ
and associated with (17) and (19) is given by

ŵwðkÞ ¼

1

2

ry

ey
E2
eqðkÞ; EeqðkÞ6 ey ;

N � 1

2ðN þ 1Þ ryey þ
ryey
N þ 1

EeqðkÞ
ey

� �Nþ1

; EeqðkÞP ey ;

8>><>>: ð20Þ

where the functional dependence of Eeq on the stretch k needs to be specified for a given deformation. The

derivative DŵwðkÞ follows from (20) and is

DŵwðkÞ ¼ SeqðkÞDEeqðkÞ ¼
ry

EeqðkÞ
ey

DEeqðkÞ; EeqðkÞ6 ey ;

ry
EeqðkÞ

ey

� �N

DEeqðkÞ; EeqðkÞP ey :

8>><>>: ð21Þ

1 In the sense of Truesdell and Noll (1965).
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Now recall the principal stretches (3). Then the infinitesimal radial strain Err and the infinitesimal cir-

cumferential strain e ¼ Ehh ¼ Euu are given by

Err ¼ kR � 1 ¼ k�2 � 1 ¼ �2ðk � 1Þ þOðk � 1Þ2;
e ¼ Ehh ¼ EUU ¼ kH � 1 ¼ k � 1:

ð22Þ

Note that the constraint of incompressibility in infinitesimal deformation is satisfied since, to a term of

order Oðk � 1Þ2, trE ¼ 0 as required. By combining (18) and (22) we get

EeqðkÞ ¼ 2ðk � 1Þ; DEeqðkÞ ¼ 2; ð23Þ

so that the energy density function (21) is completely specified as a function of stretch k or circumferential

strain e ð¼ k � 1Þ.
Before Eqs. (10)–(12) can be written in terms of strain energy density gradient (21) and (23) we need to

linearize them in an appropriate way so that we maintain non-linear material response at infinitesimal

strain. We can do this because DŵwðkÞ is actually a function of the ratio ðk � 1Þ=ey which remains finite for

stretches k near unity. Consider the integralZ C0

½½1þcððeyC0þ1Þ3�1Þ
1=3�1
=ey

eyDŵwðCÞ
ððeyC þ 1Þ3 � 1Þ

dC;

which is obtained from the integral in (10) with the substitution C ¼ ðk � 1Þ=ey . Now expand the integral in

a series in ey keeping C;C0 finite. Neglecting terms of order OðeyÞ results in the approximation

1

3

Z C0

cC0

DŵwðCÞ
C

dC:

A similar result is stated in Chung et al. (1987) in the context of cavity nucleation in a solid sphere. Using

(21)–(23), (10) governing the interface stretch may now be written in the infinitesimal strain form

0 ¼ F ðe0; rÞ ¼ �r þ s0r
e0
q

� �
þ 2

3

Z e0=ey

ce0=ey

SeqðCÞ
C

dC; ð24Þ

where e0 ð¼ k0 � 1Þ measures both the circumferential strain at the interface and the radial interface dis-

placement discontinuity. Note that we will assume that parameter q is such that the ratio e0=q remains finite

in the limit of infinitesimal e0. By substituting (19) and (23) into (24) we get the infinitesimal strain version

of the interface equation for the power law material matrix

r ¼

s0r
e0
q

� �
þ 4

3
ð1� cÞEe0;

2e0
ey

6 1;

s0r
e0
q

� �
þ 2

3
ry

1

N
2e0
ey

� �N

� 1

" #
þ 1� c

2e0
ey

( )
;

2ce0
ey

6 16
2e0
ey

;

s0r
e0
q

� �
þ 2

3

ry

N
ð1� cN Þ 2e0

ey

� �N

; 16
2ce0
ey

6
2e0
ey

:

8>>>>>>>><>>>>>>>>:
ð25Þ

The different functional forms of the equation depend upon whether the matrix shell is fully elastic 2e0 6 ey ,
elasto-plastic 2ce0 6 ey 6 2e0 or fully plastic ey 6 2ce0 6 2e0 (note that the quantity ce0 is the circumferential
strain at the outer boundary of the composite sphere). For the case of the non-hardening matrix, take the

limit of (25) as N # 0 to get
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r ¼

s0r
e0
q

� �
þ 4

3
ð1� cÞEe0;

2e0
ey

6 1;

s0r
e0
q

� �
þ 2

3
ry log

2e0
ey

� �
þ 1� c

2e0
ey

� 	
;

2ce0
ey

6 16
2e0
ey

;

s0r
e0
q

� �
þ 2

3
ry log c�1; 16

2ce0
ey

6
2e0
ey

:

8>>>>>>>><>>>>>>>>:
ð26Þ

The spherical components of stress field (S) for infinitesimal strains follow from (11), (21) and (23) by a

similar limit process used to obtain (24). The result is

Srr ¼ s0r
e0
q

� �
� 2

3

Z e=ey

e0=ey

SeqðCÞ
C

dC;

Shh ¼ Suu ¼ Srr þ Seq
e
ey

� �
;

ð27Þ

where Seq is given by (19) and we note from (5) that, to a term of order Oðk0 � 1Þ2,

e ¼ k � 1 ¼ R0

R

� �3

e0: ð28Þ

2.3. Spherically symmetric bifurcation; stability of equilibria

Eqs. (25)–(27) may be used to predict spherically symmetric behavior under increasing load r. First, the
critical load required to initiate plasticity at the inner matrix boundary follows from (25)1 for the power law

matrix and from (26)1 for the non-hardening matrix provided e0 ¼ ey=2,

r ¼ s0r
ry

2Eq

� �
þ 2

3
ð1� cÞry : ð29Þ

Note that we are assuming bifurcation of interface separation occurs at a load r greater than that required

to initiate plasticity at the inner matrix surface. The simpler case of bifurcation in an elastic matrix follows

by simply letting N ¼ 1 in the following results. Implicit in (29) are the two limiting cases of void behavior

ðs0r ð�Þ ¼ 0Þ in which the critical load increases linearly with yield stress, and rigid interface behavior in which

no amount of load is adequate to initiate yield at the interface.
Bifurcation of equilibrium interfacial separation is governed by F ðe0; rÞ ¼ De0F ðe0; rÞ ¼ 0 where the

function F is defined by (25) (or (26)). The solutions of these equations, when they exist, generate bifur-

cation points ðr�; e�0Þ. A Taylor series of F about a given bifurcation point is then usually adequate to obtain

the local behavior of the solutions near the point in question. These calculations will not be carried out here

since they yield no information that is not obtainable from a direct numerical determination of the equi-

libria governed by (25) or (26). It is of interest though to examine the bifurcation condition De0F ðe0; rÞ ¼ 0.

For the power law matrix,

0 ¼ qDe0F ¼

De0=qs
0
r

e0
q

� �
þ 4

3
ð1� cÞqE; 2e0

ey
6 1;

De0=qs
0
r

e0
q

� �
þ 2

3

qry

e0

2e0
ey

� �N

� 2ce0
ey

( )
;

2ce0
ey

6 16
2e0
ey

;

De0=qs
0
r

e0
q

� �
þ 2

3

qry

e0
ð1� cN Þ 2e0

ey

� �N

; 16
2ce0
ey

6
2e0
ey

;

8>>>>>>>><>>>>>>>>:
ð30Þ
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while for the non-hardening matrix,

¼ qDe0F ¼

De0=qs
0
r

e0
q

� �
þ 4

3
ð1� cÞqE; 2e0

ey
6 1;

De0=qs
0
r

e0
q

� �
þ 2

3

qry

e0
1� 2ce0

ey

� �
;

2ce0
ey

6 16
2e0
ey

;

De0=qs
0
r

e0
q

� �
; 16

2ce0
ey

6
2e0
ey

:

8>>>>>>>><>>>>>>>>:
ð31Þ

Thus, spherically symmetric bifurcation occurs when De0=qs
0
r ðe0=qÞ6 0 where the equality applies when the

spherical shell is fully plastic and non-hardening (31)3 and the inequality applies in all other cases, i.e., when

the interfacial separation is on the descending branch of the interface force-separation curve. Now consider

bifurcation condition (30)2 governing the partially plastic matrix shell

rmax

ry
DC0

sðC0Þ þ
2

3

1

C0

2
q
ey

C0

� �N
(

� 2c
q
ey

C0

)
¼ 0; ð32Þ

where C0 is e0=q and s ¼ s0r=rmax, rmax (the interface strength) being a characteristic of the interface force

law. Whether or not solutions to (32) exist determines the spherically symmetric bifurcation characteristics

for a particular system, i.e., the linear elastic matrix shell ðN ¼ 1; c 2 ð0; 1ÞÞ, the power law matrix shell
ðN 2 ð0; 1Þ; c 2 ð0; 1ÞÞ, the non-hardening matrix shell ðN ¼ 0; c 2 ð0; 1ÞÞ and the unbounded matrix

ðc ¼ 0Þ. The existence of solutions to (32) will generally depend on c;N and the ratios rmax=ry , q=ey . For the
special case of an unbounded non-hardening matrix ðN ¼ 0; c ¼ 0Þ, (32) becomes independent of the ratio

q=ey so that the interface force length parameter ðqÞ cannot influence whether or not bifurcation will occur.

More specifically, consider the simple physically based exponential interface force law of Ferrante et al.

(1982)

s0r
k0 � 1

q

� �
¼ ermax

k0 � 1

q
e�ðk0�1Þ=q; ð33Þ

Fig. 1. The interface force law.
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where rmax is the interface strength, and dimensionless force length parameter q characterizes the range of

action of the force law (Fig. 1). For the linear elastic matrix ðN ¼ 1Þ (32) and (33) imply that

e�0
q
¼ 1� W

�
� 4

3
ð1� cÞ q=ey

rmax=ry

�
; ð34Þ

where W is the multi-valued Lambert W function defined to be the solution y to the equation yex ¼ x
(Corless et al., 1993). Since W is defined on the domain ½�e�1;1Þ, we require that

4

3
ð1� cÞ q=ey

rmax=ry
2 ½0; e�1


be satisfied for the existence of bifurcation points which occur in pairs (an entirely analogous situation has

been shown to exist in a planar setting (Levy, 1998)). Note that the critical load at bifurcation follows by

substituting (34) in (25)1. Simple solutions to (32) and (33) do not exist for N 2 ½0; 1Þ. However, for the

unbounded ðc ¼ 0Þ non-hardening matrix ðN ¼ 0Þ insight into the bifurcation behavior can be obtained by

noting that for this case (32) and (33) imply that

e�0
q
¼ f

rmax

ry

� �
; ð35Þ

where f is the function shown in Fig. 2. The figure indicates that for rmax=ry 2 ½0; 0:794Þ no solutions to

(32) and (33) exist so there are no spherically symmetric bifurcations when the matrix shell is partially

plastic. For values rmax=ry 2 ½0:794;1Þ there are two solutions to (32) and (33) and therefore two bifur-

cation points. Furthermore, as stated previously, only for this case does the force length parameter q not

affect the character of solutions or, the existence of spherically symmetric bifurcations. Another aspect of
behavior is whether spherically symmetric equilibrium solutions exist for the partially plastic, or fully

plastic matrix shell in the post bifurcation regime. This aspect of behavior, as well as others, will be ex-

plored below.

Fig. 2. The function f ðrmax=ryÞ.
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An analysis of stability can proceed once the potential energy is written for the infinitesimally deformed

power law matrix sphere. Introduce the quantity C ¼ ðk � 1Þ=ey ¼ e=ey in (15) and expand the result in a

series in ey retaining only linear terms. The result is

bUUðe0Þ ¼ c
e0
ey

Z e0=ey

ce0=ey

ŵwðCÞ
C2

dC þ 3cey

Z e0=ey

s0r C
ey
q

� �
dC � 3rce0; ð36Þ

where ŵw is given by (20) and where we have assumed that both C and the ratio ey=q are finite. It follows

directly from (36) that

De0
bUU ¼ 3cF ; D2

e0
bUU ¼ 3cDe0F ; ð37Þ

where F is given by (24), and where qDe0F for the hardening matrix is given by (30) and for the non-

hardening matrix by (31). Below we consider the two limiting cases of the elastic matrix ðN ¼ 1Þ and the

non-hardening matrix ðN ¼ 0Þ. We assume that the interface law is of the form (33) or, has the properties:

s0r ð0Þ ¼ 0, Ds0r ðe0=qÞ has a single maximum on e0=q 2 ½0;1Þ, s0r ðe0=qÞ ¼ Ds0r ðe0=qÞ ¼ 0, e0=q " 1 and

D2s0r ðe0=qÞ vanishes at two points one of which is at infinity.

The elastic case ðN ¼ 1Þ. It follows from (30), (37)2 and the local stability definition that, for N ¼ 1,
equilibrium states are locally stable provided, Ds0r ðe0=qÞ > � 4

3
ð1� cÞqE. Note that, except for the case

where the line � 4
3
ð1� cÞqE is tangent to the curve Ds0r ðe0=qÞ, there are two (bifurcation) points that satisfy

Ds0r ðe0=qÞ ¼ � 4
3
ð1� cÞqE if there is one point that satisfies it (this has been stated another way in the

discussion following (34)). These points bound the branch of unstable equilibrium states (Fig. 3). Note that

the slope Ds0r ðe0=qÞ can be negative at stable equilibrium states. If Ds0r ðe0=qÞ > � 4
3
ð1� cÞqE for all values

of e0=q then the curves never intersect, there are no bifurcation points and all equilibrium states are stable.

The existence of a pair of distinct bifurcation points is therefore necessary and sufficient for the existence of

unstable equilibrium states.

Fig. 3. Stability behavior. Elastic matrix. F ¼ Ds0r ðe0=qÞ, G ¼ �4ð1� cÞqE=3. c ¼ 0:05, q=ey ¼ 1, rmax=ry ¼ 5.
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The non-hardening case ðN ¼ 0Þ. For this case (31) indicates that equilibrium states are locally stable if

Ds0r
e0
q

� �
>

� 4

3
ð1� cÞqE; 2e0

ey
6 1;

� 2

3
ry

1

e0=q
� 2cq

ey

� �
;

2ce0
ey

6 16
2e0
ey

;

0; 16
2ce0
ey

6
2e0
ey

;

8>>>>>><>>>>>>:
ð38Þ

where (38)1 applies when the matrix shell is elastic, (38)2 applies when the shell is elastic–plastic, and (38)3
applies when the shell is fully plastic. Assume that the first bifurcation point occurs when the matrix is

elastic–plastic or fully plastic. Two of the three possible cases are presented as plots of the left-hand side of

(38) and the right-hand side of (38). In Fig. 4a, there are three bifurcation points and four distinct stability

regions. The origin and the first bifurcation point bound a region of stable behavior. The first two bifur-

cation points bound a region of unstable behavior. The third bifurcation point (not visible in Fig. 4a) arises
from the fact that Ds0r ðe0=qÞ vanishes from below as its argument approaches infinity (and therefore must

intersect the right-hand side of (38)2 before e0=q ¼ ey=ð2cqÞ). Thus, the second and third bifurcation points

bound a region of stable states but equilibria lying to the right of the third bifurcation point are unstable.

This must occur prior to the state when the matrix becomes fully plastic. (Note that the matrix becomes

fully plastic when e0=q ¼ ey=ð2cqÞ, which for the data of Fig. 4 is e0=q ¼ 10.) The next case (Fig. 4b) shows

that there is one bifurcation point that divides the response into stable states (to the left of the bifurcation

point) and unstable states (to the right). The third possibility (not shown) is such that Ds0r ðe0=qÞ remains

positive throughout the elastic–plastic response of the matrix shell. When the matrix is fully plastic, bi-
furcation will occur when the slope Ds0r ðe0=qÞ vanishes. Thus, it is possible to have stable equilibrium states

when the sphere is fully plastic but the sphere will lose stability when the interface force law attains its

maximum value. In contrast to the elastic case bifurcation will ultimately always occur.

The case of the hardening matrix will not be given separate treatment. It is similar to the elastic matrix

because the term

Fig. 4. Stability behavior. Non-hardening matrix. F ¼ Ds0r ðe0=qÞ, G ¼ RHS of (38). (a) c ¼ 0:05, q=ey ¼ 1, rmax=ry ¼ 3=4; (b) c ¼ 0:05,

q=ey ¼ 2, rmax=ry ¼ 2.
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� 2

3

qry

e0
ð1� cN Þ 2e0

ey

� �N

in (30)3 vanishes from below (more slowly than Ds0r ðe0=qÞ) as its argument e0=ey approaches infinity.
Figs. 5 and 6 are obtained from (25) and (26) and depict graphs of normalized boundary traction ðr=ryÞ

versus normalized interface separation (strain) e0=ey for various values of parameters. The data used in the

Fig. 5. Load versus strain. r ¼ q=ey , rmax ¼ 3ry , ry ¼ 0:002E, c ¼ 0:0104, N ¼ 0:1.

Fig. 6. Load versus strain. r ¼ q=ey ¼ 1, rmax ¼ 3ry , ry ¼ 0:002E, c ¼ 0:0104.
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calculations is taken from Needleman (1987) and corresponds to spheroidized steel (ry ¼ 0:002E,
rmax ¼ 3ry , c ¼ 0:0104). Fig. 5 shows the effect of normalized force length parameter q=ey on response for a

hardening coefficient N ¼ 0:1. The domain depicted in the figure is e0=ey 2 ð0; ð2cÞ�1Þ where the upper

bound is that point where the sphere becomes fully plastic. Clearly increasing the force length parameter
raises the critical load at bifurcation. Note that all curves are bounded by the rigidly bonded interface

solution ðe0=ey ¼ 0Þ and by the void solution, which is approached asymptotically as indicated in the figure.

Fig. 6 depicts the response for various values of strain hardening exponent N assuming a force length

ratio q=ey ¼ 1. All curves are bounded by linear elastic response ðN ¼ 1Þ and perfectly plastic response

ðN ¼ 0Þ. The effect of decreasing the strain-hardening exponent is to decrease the critical load at bifur-

cation. Furthermore, there are two threshold values of N obtainable from (25) and (30). For values of N
greater then 0.874 no bifurcation occurs and the response is the gradual separation of the interface. For N
less then 0.874 but greater then 0.148 bifurcation occurs characterized by the abrupt transition between two
equilibrium interface separation states. For values of N less then 0.148 there are no spherically symmetric

equilibrium solutions after bifurcation which signals the transition to non-symmetric equilibrium states or,

dynamic response. Note that the lack of spherically symmetric equilibria in the post bifurcation regime can

occur when there are two bifurcation points (Fig. 6, N ¼ 0 curve) or, when there is one bifurcation point,

i.e., the curve monotonically decreases from its maximum and approaches a local minimum at infinity

(recall Fig. 4b). Finally, note that Figs. 5 and 6 are essentially plots of applied boundary traction versus

circumferential boundary strain (recall that the circumferential boundary strain is ce0).
The evolution of the elasto-plastic boundary may be obtained as follows. Assume that (29) is satisfied

and that the boundary between elastic response and power law response is located at a radius R� with

R� 2 ðR0;R1Þ. Then e� ¼ ey=2 so that, by (25)2 (or (26)2) and (28) we have

r ¼
s0r

ey
2q

R�

R0

� �3
 !

þ 2

3
ry

1

N
R�

R0

� �3N

� 1

" #
þ 1� c

R�

R0

� �3
( )

; N > 0;

s0r
ey
2q

R�

R0

� �3
 !

þ 2

3
ry log

R�

R0

� �3

þ 1� c
R�

R0

� �3
( )

; N ¼ 0;

8>>>><>>>>: ð39Þ

which are algebraic equations governing the evolution of R�=R0 with r, for the hardening and non-hard-

ening matrix, respectively. They may be readily solved once an interface force-separation relation s0r ðe0=qÞ
has been prescribed. Figs. 7 and 8 are graphs of (39) for the interface force law (33). Note that in both

figures the range of R�=R0 is ð1; c�1=3Þ, i.e., the elasto-plastic boundary lies between the inner and outer

radius of the matrix shell. Fig. 7 shows response for various values of normalized force length parameter

q=ey and for a hardening coefficient N ¼ 0:1. (All other parameter values are the same as in Figs. 5 and 6.)

For the void, the elasto-plastic boundary evolves continuously with increasing boundary traction r and this

curve is approached by all of the others as the interface separates. The remaining curves indicate a dis-

continuous change in elasto-plastic boundary under increasing load. This phenomenon coincides with the

rapid unloading of the interface and the abrupt increase in the radius of the inner matrix boundary. The
response after this transition corresponds to a material still deforming according to the non-linear power

law. In an actual metallic material, this would not be the case since linear elastic unloading of matrix

material would accompany the sudden reduction in interface traction. Furthermore, with decreasing ratio

q=ey this transition occurs sooner although the initial yield at the inner matrix boundary is delayed. Fig. 8

shows the dependence of elasto-plastic boundary evolution on strain hardening coefficient. Clearly, the

effect of straining hardening is to tend to reduce the destabilizing effects of abrupt unloading of the interface

as noted previously.

The radial stress component in the elastic zone R 2 ðR�;R1Þ of the partially plastic matrix, with elasto-
plastic boundary at R�, is obtained from (27)1, (19) and (23) provided we recall (28) and note that e� ¼ ey=2,
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SrrðR;R�Þ ¼
s0r

ey
2q

R�

R0

� �3
 !

þ 2

3
ry

1

N
R�

R0

� �3N

� 1

" #
þ 1� R�

R

� �3
( )

; N > 0;

s0r
ey
2q

R�

R0

� �3
 !

þ 2

3
ry log

R�

R0

� �3

þ 1� R�

R

� �3
( )

; N ¼ 0:

8>>>><>>>>: ð40Þ

Fig. 8. Elasto-plastic boundary radius versus load. (Data as in Fig. 6.)

Fig. 7. Elasto-plastic boundary radius versus load. r ¼ q=ey (Data as in Fig. 5.)
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The circumferential stress component then follows from (27)2 with Seq now taken as a function of R�=R
since 2e=ey ¼ ðR�=RÞ3. The formulae yield the stress components Srr; Shh in terms of the load r and the radius

R provided they are coupled to the (39). Similarly, the radial and circumferential stress in the plastic zone of

the matrix with elasto-plastic boundary at R� follows from (27),

SrrðR;R�Þ ¼
s0r

ey
2q

R�

R0

� �3
 !

þ 2

3
ry

1

N
R�

R0

� �3N

� R�

R

� �3N
" #

; N > 0;

s0r
ey
2q

R�

R0

� �3
 !

þ 2

3
ry log

R
R0

� �3

; N ¼ 0:

8>>>><>>>>: ð41Þ

Fig. 9 is a plot of the normalized circumferential stress ðShh=ryÞ at the interface versus normalized boundary

traction ðr=ryÞ for different values of strain hardening coefficient N . As described above, the range of R�=R0

used to obtain the curves in Fig. 9 is ð1; c�1=3Þ, i.e., initial application of the load through the point where

the matrix is fully plastic. The initial portion of the curve describes elastic but non-linear response prior to

yield at the interface. This is because of non-linear separation at the interface. After initial yield, the stress

initially increases for all values of the hardening exponent N 2 ½0; 1
. For the values of N (<1) used in the
figure, Shh drops abruptly at bifurcation with the severity of the drop increasing with decreasing hardening

coefficient. This is in contrast to elastic response, where Shh increases as the interface unloads.

Finally, the displacement field urðRÞ in a matrix with elasto-plastic boundary at R� may be obtained from

the following:

urðRÞ ¼ Re ¼ e�R
R�

R

� �3

¼ 1

2
eyR

R�

R

� �3

; ð42Þ

which, due to the constraint of incompressibility, applies in both elastic and plastic zones. Naturally,

displacement (42) must be coupled to (39) in order to obtain it as a function of load r.

Fig. 9. Circumferential stress versus load. (Data as in Fig. 6.)
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3. Non-symmetric incremental equilibrium states

3.1. The bifurcation problem

At some stage in the spherically symmetric deformation process just considered, we expect non-sym-

metric deformations to initiate, coincident with the rigid displacement of the inclusion within a matrix

cavity. In Levy (2002), aspects of this problem were analyzed by applying the theory of incremental strain

superposed on a finite deformation, to a composite sphere consisting of a hyperelastic matrix shell which

separates non-linearly from a rigid inclusion. Here we apply some of the results of that work to the in-

finitesimal, initially strained composite sphere consisting of power law matrix material, rigid inclusion and

interface characterized by a non-linear force separation relation. In the subsection that follows this one, we

present an energy analysis of stability of spherically symmetric states to non-symmetrical rigid body mode
perturbations. Throughout, we will maintain the assumption that the interface force law contains an ad-

ditional non-dimensional length parameter of the same order of magnitude as the yield strain. Because we

are dealing with a spherically symmetric initially strained state and a superposed non-symmetrical incre-

mental state which are both infinitesimal, we normalize all strains with respect to either the yield strain or

the interface force length parameter, and take the normalized initially strained state as finite and the

normalized, superposed state as infinitesimal.

Without loss of generality assume that non-symmetrical configurations are characterized by fields that

are independent of longitudinal angle u. This assumption is consistent with a rigid inclusion displacement
in the e3 direction. The superimposed infinitesimal displacement field may then be written as

ueðx0Þ ¼ ue
rer þ ue

heh where the symbol e indicates that the field is normalized with respect to yield strain ey .
Coupled linear differential equations governing the displacement components ue

r, u
e
h and the incremental

pressure Dp follow from the incremental equilibrium equations (Truesdell and Noll, 1965) and the in-

compressibility constraint. They are given explicitly in Ogden (1984) for the case of a pressurized spherical

shell, and more recently in Levy (2002) for the radially loaded composite sphere. In both of these cases, the

initially strained state is finite and the matrix is hyperelastic. Now the linearity of the incremental equations

indicates that the solution may be represented by an eigenfunction expansion. The radial displacement ue
r

and incremental pressure Dp are chosen to be even functions of h while angular displacement ue
h is chosen to

be an odd function of h. We can then write the solution in the form of an expansion of Legendre poly-

nomials Pnðcos hÞ,

ue
r ¼ U e

0ðrÞ þ
X1
n¼1

U e
nðrÞPnðcos hÞ;

ue
h ¼

X1
n¼1

V e
n ðrÞP 0

nðcos hÞ;

Dp ¼ P0ðrÞ þ
X1
n¼1

PnðrÞPnðcos hÞ;

ð43Þ

where P 0
nðcos hÞ ¼ dPnðcos hÞ=dh. Ogden (1984) has shown that the expansion (43) ultimately reduces the

incremental partial differential equations to a single fourth order equation for U e
nðrÞ and two other equa-

tions giving V e
n ðrÞ;PnðrÞ in terms of it. For the n ¼ 0; 1 modes he has integrated the fourth order equation

exactly. Because we have considered the spherically symmetric n ¼ 0 mode in the previous section here we

focus on the first non-symmetric n ¼ 1 mode. Thus,

r €UU e
1 þ ðk3 þ 3Þ _UU e

1 ¼
C1r
keyb

; r4 _UU e
1 ¼ 2C1k

Z r

t4
k3 � k�3

DŵwðkÞ dt þ kC2; ð44Þ
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where a dot indicates derivative with respect to coordinate r and b is defined by

b ¼ k

2ðk6 � 1Þ
DŵwðkÞ;

which we take to be positive by virtue of the Baker–Ericksen inequalities. The quantity V e
1 ðrÞ is determined

from

V e
1 ¼ 1

2
ðr _UU e

1 þ 2U e
1Þ: ð45Þ

Result (44) presumes that the initially strained state is finite. In our case the initially strained spherically
symmetric state is infinitesimal but the normalized state, characterized by e=ey ð¼ ðk � 1Þ=eyÞ, is finite.

Therefore, we can write (44) in the form

r €UU e
1 þ 4 _UU e

1 ¼ 12C1r
e=ey

Dŵwðe=eyÞ
; r4 _UU e

1 ¼ 12C1

Z r

t4
e=ey

Dŵwðe=eyÞ
dt þ C2; ð46Þ

which, by (21)–(23), can be integrated directly.

In the finite initially strained problem the boundary conditions consist of a spherically symmetric dead

load traction applied to the outer surface of the composite sphere and a configuration dependent interface

traction, sIð�erÞ ¼ �srer � sheh, applied to the inner boundary of the composite spherical shell. The ar-
guments of sr; sh are the ratios of the normalized (with respect to inclusion radius) interface displacement

jump components ~uu; ~vv to force length parameter q. (Note that srðe0=q; 0Þ ¼ s0r ðe0=qÞ introduced previously.)

As shown in Levy (2002) the boundary conditions can be expressed in terms of the mode multipliers which,

for the n ¼ 1 mode, are

eybðk1Þr1 €UU e
1ðr1Þ þ ½2bðk1Þ þ k�2

1 r
ey _UU e
1ðr1Þ ¼ 0;

eybðk0Þr0 €UU e
1ðr0Þ þ 2eybðk0Þ _UU e

1ðr0Þ ¼
3

2

Z p

0

srP1ðcos hÞ sin hdh:
ð47Þ

For infinitesimal initially strained states, but finite normalized states, (47) assumes the form

r1 €UU e
1ðr1Þ þ 2 _UU e

1ðr1Þ ¼ 0;

b̂bðe0=eyÞr0 €UU e
1ðr0Þ þ 2b̂bðe0=eyÞ _UU e

1ðr0Þ ¼ D~uu=qsrðe0=q; 0Þ
ey
q
U e

1ðr0Þ � we

r0
;

ð48Þ

where b̂b ¼ Dŵwðe=eyÞ=ð12e=eyÞ and we note that the ratio of yield strain to force length parameter is finite

since it is assumed that they are of the same order of magnitude. The quantity we is the magnitude of a rigid

body displacement in the e3 direction and it appears in (48) because the interface force sr depends on the

difference between the inner matrix boundary displacement and the rigid body displacement of the (rigid)

inclusion (for a more detailed description of the kinematics see Levy (2002)). (Note that we are assuming

that the inclusion does not rotate in the superimposed deformation.)

An additional constraint on the rigid body displacement arises from overall rigid body equilibrium of the

inclusion. It can be shown (Levy, 2002) that the single non-trivial equilibrium equation is of the formZ p

0

½srP1ðcos hÞ þ shP 0
1ðcos hÞ
 sin hdh ¼ 0; ð49Þ

which is valid for finite initially strained states. For infinitesimal initially strained states (49) may be written

as

D~uu=qsrðe0=q; 0Þ
U e

1ðr0Þ � we

r0
þ 2D~vv=qshðe0=q; 0Þ

V e
1 ðr0Þ � we

r0
¼ 0; ð50Þ
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where we have used the fact that the ratio of the normalized (with respect to inclusion radius) interface

displacement jump components to force length parameter are

~uuðr0; hÞ
q

¼ e0
q
þ ey

q
U e

0ðr0Þ
r0

þ ey
q
U e

1ðr0Þ � we

r0
P1ðcos hÞ þ � � � ;

~vvðr0; hÞ
q

¼ ey
q
V e
1 ðr0Þ � we

r0
P 0
1ðcos hÞ þ � � �

ð51Þ

Note that (51) follows from the fact that the normalized displacement jump components ~uu; ~vv from the

undeformed state to the current configuration arise from the superposition of the deformation e0 of the

spherically symmetric initially strained state, plus the superposed non-symmetrical deformation

ur=R0; uh=R0 minus the rigid body displacement of the inclusion w0=R0. In obtaining (51), we have employed
(43) and additionally, we have assumed that initially strained equilibrium states are infinitesimal. Boundary

conditions (48), rigid body equilibrium constraint (50) and general solution (46) may be used to predict

aspects of the n ¼ 1 bifurcation mode and the critical load at which it occurs. In what follows, we consider

two cases, the composite sphere with a smooth interface, and an unbounded matrix allowing for interfacial

shear.

The smooth interface.When the interface is smooth it cannot support shear traction and sh ¼ 0 and sr is
independent of ~vv (in which case we write srð~uu=qÞ). In this case (50) becomes D~uu=qsrðe0=qÞ�
½ðU e

1ðr0Þ � weÞ=r0
 ¼ 0 and boundary conditions (48) become homogeneous,

r1 €UU e
1ðr1Þ þ 2 _UU e

1ðr1Þ ¼ 0;

r0 €UU e
1ðr0Þ þ 2 _UU e

1ðr0Þ ¼ 0:
ð52Þ

The solution (46)2 together with boundary conditions (52) imply that C2 is linearly related to C1 andZ C0

cC0

C�2=3D2ŵwðCÞ
½DŵwðCÞ
2

dC

" #
C1 ¼ 0; ð53Þ

where an integration by parts has been carried out and we recall that C0 ¼ e0=ey . It is not hard to show that

for ŵw defined by (20) the integral in (53) is generally non-zero and of one sign. The exception is in the limit

of the non-hardening matrix ðN # 0Þ, as the matrix shell becomes fully plastic. This is readily apparent from

the expansion of the integral for the case of a partially plastic power law matrix shell with C0 P 1=2 and
cC0 6 1=2,Z C0

cC0

C�2=3D2ŵwðCÞ
½DŵwðCÞ
2

dC ¼ 3

20ry
ðcC0Þ�5=3

"
� 1

2

� ��5=3
#
þ 3 � 2�ðNþ1ÞN

ð2þ 3NÞry

1

2

� ��2=3�N
"

� ðC0Þ�2=3�N

#
:

Excluding this exceptional case we have that (53) implies that C1, and therefore C2, is zero. Then by (46)2
U e

1, and therefore V e
1 ð¼ U e

1Þ, is a constant to be absorbed into the unknown rigid body displacement we.

The rigid body constraint (50) then becomes

D~uu=qsrðe0=qÞ
we

r0
¼ 0: ð54Þ

Mode n ¼ 1 bifurcation phenomena characterizing the first non-symmetric mode is therefore governed by

(54). The spherically symmetric bifurcation mode n ¼ 0, which has been analyzed in detail in the first part
of the paper, is governed by

De0F ðe0; rÞ
U e

0

r0
¼ Dr; ð55Þ

A.J. Levy / International Journal of Solids and Structures 40 (2003) 2535–2561 2553



where U e
0 is the incremental spherically symmetric mode multiplier, Dr is the incremental loading and

De0F ðe0; rÞ is given by (30) or (31). Non-symmetrical solutions we 6¼ 0 associated with (54) and (55) exist

provided,

D~uu=qsrðe0=qÞ ¼ 0; ð56Þ

that is, when the interface force obtains its maximum value. (Note that the eigenmode is the non-symmetric

rigid body displacement weðcos her � sin hehÞ, which is orthogonal to the incremental load as required.) For

an interface force law with sr ¼ s0r and s0r given by (33) the maximum occurs when e0 ¼ q so that

srð1Þ ¼ rmax. Recall that we have shown previously that when the matrix is composed of hardening material

or, when it is non-hardening and not fully plastic, spherically symmetric bifurcation occurs when

D~uu=qsrðe0=qÞ < 0. Thus, (56) implies that non-symmetric bifurcation always precedes spherically symmetric
bifurcation unless the material is non-hardening and fully plastic in which case they coincide. Furthermore,

unlike spherically symmetric bifurcation, there is no threshold value of N so that non-symmetric bifurcation

will always occur. Now recall (25) for the power law matrix. The critical load at bifurcation is

r ¼

rmax þ
4

3
ð1� cÞry

q
ey
;

2q
ey

6 1;

rmax þ
2

3
ry

1

N
2q
ey

� �N

� 1

" #
þ 1� c

2q
ey

( )
;

2cq
ey

6 16
2q
ey

;

rmax þ
2

3

ry

N
ð1� cN

2q
ey

� �N

; 16
2cq
ey

6
2q
ey

:

8>>>>>>>><>>>>>>>>:
ð57Þ

For the non-hardening matrix the result is

r ¼

rmax þ
4

3
ð1� cÞry

q
ey
;

2q
ey

6 1;

rmax þ
2

3
ry log

2q
ey

� �
þ 1� c

2q
ey

� 	
;

2cq
ey

6 16
2q
ey

;

rmax þ
2

3
ry log c�1; 16

2cq
ey

6
2q
ey

:

8>>>>>><>>>>>>:
ð58Þ

Because the terms on the right-hand side (57) and (58) are positive we have the fact that non-symmetric

bifurcation always occurs at a value of applied load which is greater than the interface strength. Fig. 10 is a

plot of normalized bifurcation load ðr=ryÞ versus normalized force length parameter ðq=eyÞ for different

values of strain hardening coefficient N . The data used in the figure coincides with that used in previous

figures, i.e., rmax ¼ 3ry , c ¼ 0:0104. The behavior is bounded by the elastic case ðN ¼ 1Þ and the non-

hardening case ðN ¼ 0Þ. As expected increasing the force length parameter increases the bifurcation load.

Increasing the strain hardening coefficient has the effect of elevating the bifurcation load as well. As is

apparent from (57) and (58) increasing the interface strength also increases the bifurcation load.
The unbounded matrix; interfacial shear. The unbounded matrix is characterized by a vanishing con-

centration c. The boundary conditions (48) and the rigid body equilibrium condition (50) remain valid for

this case provided we apply (48)1 remotely, i.e., as r1 " 1. If we assume that _UU e
1 remains bounded as r1 " 1

then (48)1 and (46)1 imply that C1 ¼ 0. It follows from (46)2 that

€UU e
1 ¼ �4C2r�5; _UU e

1 ¼ C2r�4; U e
1 ¼ � 1

3
C2r�3 þ C3: ð59Þ

The interface boundary condition (48)2 determines C2, which in turn fixes U e
1; V

e
1 in terms of C3 and we

0. The

bifurcation condition is then determined by substituting these values of U e
1; V

e
1 into (50). The result is
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C3 � we
0

r0
½ð1þ aÞD~uu=qsrðe0=q; 0Þ þ 2ð1� a=2ÞD~vv=qshðe0=q; 0Þ
 ¼ 0; ð60Þ

where a is given by

a ¼ ðey=qÞD~uu=qsrðe0=q; 0Þ=4b̂b
1� ðey=qÞD~uu=qsrðe0=q; 0Þ=4b̂b

: ð61Þ

In this paper, we will assume that at bifurcation the quantity a is so small that it can be neglected in

comparison to unity (so that U e
1 ¼ V e

1 ¼ constant). In order to see the consequence of this assumption recall

that when there is no interfacial shear the interface force law is such that srðe0=qÞ is a maximum when

e0=q ¼ 1 which is the bifurcation condition for the smooth interface. Now assume that with interfa-

cial shear present, bifurcation occurs when e0=q ¼ 1þ d where d is a small parameter. Then

D~uu=qsrð1þ d; 0Þ ¼ OðdÞ, a ¼ OðdÞ and D~vv=qshð1þ d; 0Þ ¼ OðdÞ. (Note that we are assuming that

D~uu=qsrðe0=q; 0Þ ¼ D~uu=qsrðe0=qÞ, i.e., that the slope of the force law for spherically symmetric states is equal to
the slope of the force law for the smooth interface.) By neglecting a we are neglecting terms of order Oðd2Þ
compared to terms of order OðdÞ in (60). This is consistent with an interfacial shear stiffness of order OðdÞ
(see (64)). The rigid body constraint condition then simplifies to

½D~uu=qsrðe0=q; 0Þ þ 2D~vv=qshðe0=q; 0Þ

we

r0
¼ 0; ð62Þ

where C3 has been absorbed into we
0. Mode n ¼ 1 bifurcation phenomena characterizing the first non-

symmetric mode is therefore governed by (62) which is a generalization of (54). Non-symmetric solutions

we 6¼ 0 associated with (55) and (62) exist provided

D~uu=qsrðe0=q; 0Þ þ 2D~vv=qshðe0=q; 0Þ ¼ 0 ð63Þ

with rigid body eigenmode weðcos her � sin hehÞ.

Fig. 10. Critical load versus force length parameter. Smooth interface. rmax ¼ 3ry , c ¼ 0:0104.
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To obtain explicit results consider a modification of the normal exponential force-separation law (33) to

account for interfacial shear (Needleman, 1992),

srð~uu=q; ~vv=qÞ ¼ ermax

~uu
q

8<: � 1

2
g

~vv
q

 !2
9=;e�~uu=q;

shð~uu=q; ~vv=qÞ ¼ ermax g
~vv
q

( )
e�~uu=q;

ð64Þ

where interfacial shear parameter g (P 0) is a measure of both the shear stiffness of the interface as well as
the strength of the coupling between the normal and tangential separation modes. The parameters rmax and

q retain the same meaning as defined previously. This simple model characterizes non-linear normal sepa-

ration and linear shear slip appropriate for incipient non-symmetrical branching from the principal path of

spherically symmetric equilibrium states.

For the force law (64), bifurcation condition (63) becomes

e�0
q
¼ 1þ 2g: ð65Þ

Critical loads for non-symmetric bifurcation are obtained by substituting (65) into (25), for the power law

matrix, and (26) for the non-hardening matrix. For the power law matrix the result is

r ¼
rmaxð1þ 2gÞe�2g þ 4

3
Eqð1þ 2gÞ; 2qð1þ 2gÞ

ey
6 1;

rmaxð1þ 2gÞe�2g þ 2

3
ry

1

N
2qð1þ 2gÞ

ey

� �N

� 1

" #
þ 1

( )
; 16

2qð1þ 2gÞ
ey

;

8>>><>>>: ð66Þ

while for the non-hardening matrix

r ¼
rmaxð1þ 2gÞe�2g þ 4

3
Eqð1þ 2gÞ; 2qð1þ 2gÞ

ey
6 1;

rmaxð1þ 2gÞe�2g þ 2

3
ry log

2qð1þ 2gÞ
ey

� �
þ 1

� 	
; 16

2qð1þ 2gÞ
ey

:

8>><>>: ð67Þ

Eqs. (66) and (67) extend the smooth interface results (57) and (58) (with c ¼ 0) to account for interfacial

shear. Note that non-symmetric bifurcation always occurs at a critical load that exceeds the interface force

srðe�0=q; 0Þ ¼ rmaxð1þ 2gÞe�2g.

Fig. 11 is a plot of normalized bifurcation stress ðr=ryÞ versus normalized force length parameter ðq=eyÞ
for different values of interfacial shear parameter ðgÞ. The data used in the figure is rmax ¼ 3ry , N ¼ 0:1
which coincides with that used in previous figures. As expected, the critical load increases with force length

parameter. The effect of interfacial shear parameter on behavior is not as obvious. For the range of q=ey
values depicted in the figure no discernable trend is observed. If this range is substantially increased then the
g ¼ 1 curve will cross the g ¼ 0; 0:1 curves and we will have the result that ultimately, increasing the in-

terfacial shear parameter raises the bifurcation stress. For small values of q=ey (not indicated in the figure)

the opposite trend is observed, i.e., increasing g decreases the bifurcation load. This unphysical result has

been described in Levy (2001, 2002) and is a consequence of the global structure of branches of equilibria

emanating from the principal spherically symmetric one. Essentially those bifurcation points, for which

increasing g decreases the critical load, lie on unstable branches which are unreachable by a continuous

increase in load from the undeformed state. The numerical determination of the non-symmetrical branches

of equilibrium states is beyond the scope of this paper. This kind of calculation however has been carried
out in Levy (1998) for the case where the matrix and the inclusion are linear elastic.
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3.2. The stability problem

Here we focus on the composite sphere with a smooth interface and the unbounded matrix with in-

terfacial shear (subject to the restriction that a is small). Recall that for these two cases, the n ¼ 1 mode

U e
1P1ðcos hÞ; V e

1 P
0
1ðcos hÞ vanishes so that the strain energy of the matrix will be independent of this mode.

We begin by constructing the potential energy associated with a deformed state of the sphere obtained by
subjecting the finite spherically symmetric state to superimposed, infinitesimal spherically symmetric and

non-symmetric rigid body perturbations. The potential energy for the infinitesimally strained power law

matrix will then be obtained by a formal limit process. Now the potential energy U consists of the strain

energy of the matrix, the interface energy associated with normal separation mode and shear slip mode, and

the potential energy of the loading. The first and third terms on the right-hand side of (14) representing the

strain energy of the matrix and the potential energy of the loading are essentially unchanged provided we

substitute for f the deformation ~ff ¼ f þ U0 where U0 represents the infinitesimal spherically symmetric

perturbation. The interface energy is given byZ t1

t0

Z
ofðXÞ

sIð
(

� erÞ � ½v
dA
)
dt;

where ½v
 is the velocity of points on the inner matrix boundary relative to the inclusion ½v
 ¼
_~ff~ff er � _ww0ðcos her � sin hehÞ, i.e., the velocity jump at the interface neglecting all modes higher than n ¼ 1.

Note that here a superposed dot indicates time derivative. The potential energy can be written in the final

form

bUUðu0;x0Þ ¼ 3c½ðk0 þ u0Þ3 � 1

Z k0þu0

½1þcððk0þu0Þ3�1Þ
1=3

r̂rðk�2; k; kÞk2

ðk3 � 1Þ2
dk � 3rf½1þ cððk0 þ u0Þ3 � 1Þ
1=3 � 1g

þ 3c
Z k0þu0

ŝs0r ðzÞz2 dzþ
c
q

D~uu=qsr
k0 � 1

q
; 0

� ��
þ 2D~vv=qsh

k0 � 1

q
; 0

� �	
ðk0 þ u0Þ2

Z x0

zdz;

ð68Þ

Fig. 11. Critical load versus force length parameter. Unbounded matrix. rmax ¼ 3ry , N ¼ 0:1.
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where u0 ¼ U0ðR0Þ=R0 is now the normalized spherically symmetric perturbation, x0 ¼ w0=R0 is the nor-

malized non-symmetrical rigid body perturbation and bUU has been normalized with respect to the sphere

volume 4
3
pR3

1.
2 (Recall that ŝs0r ðk0Þ ¼ s0r ððk0 � 1Þ=qÞ is the normal component of interface force for spheri-

cally symmetric states.)
It is a straightforward matter to show that values of u0, which render bUU stationary for vanishing x0, are

solutions to the equation governing continuing spherically symmetric equilibrium

0 ¼ Du0
bUUðu0; 0Þ

¼ 3ck2
0k

�2
1

(
� Dr þ �k3

0Dkŵwðk1Þ
ðk3

0 � 1Þ

"
þ k0k

2
1Dkŵwðk0Þ
ðk3

0 � 1Þ
þ 2crk3

0k
�3
1 þ k0k

2
1q

�1D~uu=qsr
k0 � 1

q
; 0

� �#
U0ðr0Þ
r0

)
;

ð69Þ

where terms of order Oðu20Þ have been neglected and use has been made of (10) and (3). This equation has

been obtained by Levy (2002) by expanding (10) in a series of small perturbations about k0. Consider now
the derivative Dx0

bUUðu0;x0Þ. By neglecting terms of second order in u0;x0 we have

Dx0
bUUð0;x0Þ ¼

c
q

k2
0 D~uu=qsr

k0 � 1

q
; 0

� ��
þ 2D~vv=qsh

k0 � 1

q
; 0

� �	
x0; ð70Þ

so that bUU is stationary for all values of x0 provided the bracketed quantity in (70) vanishes. This is identical

to the equation governing the rigid body bifurcation mode x0 (Levy, 2002).

The second derivatives of bUU are required to assess the stability of spherically symmetric equilibrium

states to both spherically symmetric and non-symmetric rigid body perturbations. They are given by

D2
u0
bUUð0; 0Þ ¼ 3ck0k

�5
1 2crk3

0

"
þ k0k

5
1q

�1D~uu=qsr
k0 � 1

q
; 0

� �
� k3

0k
3
1Dkŵwðk1Þ
ðk3

0 � 1Þ
þ k0k

5
1Dkŵwðk0Þ
ðk3

0 � 1Þ

#
;

Du0;x0
bUUð0; 0Þ ¼ 0;

D2
x0

bUUð0; 0Þ ¼ c
q

k2
0 D~uu=qsr

k0 � 1

q
; 0

� ��
þ 2D~vv=qsh

k0 � 1

q
; 0

� �	
:

ð71Þ

Thus, the spherically symmetric equilibrium state characterized by k0 is locally stable if the (non-vanishing)

second derivatives in (71) are positive for all infinitesimal perturbations u0;x0. Note that D2
u0
bUUð0; 0Þ given

by (71)1 is identical to (16) so that D2
u0
bUUð0; 0Þ > 0 is sufficient to insure local stability to spherically sym-

metric perturbations. (This result follows by specializing (5) to be k3
1 � 1 ¼ cðk3

0 � 1Þ.) The condition

D2
x0

bUUð0; 0Þ > 0 therefore guarantees local stability to non-symmetric rigid body perturbations.

Consider first the smooth interface, shð~uu=q; ~vv=qÞ ¼ 0, sr independent of ~vv. Then stability to non-sym-

metric perturbations requires that

D2
x0

bUUð0; 0Þ ¼ cq�1k2
0D~uu=qsr

k0 � 1

q

� �
> 0;

i.e., the slope of the interface force-separation curve must be positive. Thus, whereas the existence of un-

stable spherically symmetric equilibrium states to spherically symmetric perturbations (discussed in the first

part of the paper) depends on the interface force law as well as the strain energy of the matrix, the instability

to non-symmetric rigid body perturbations only requires that equilibria reside on the descending branch of

the force-separation law.

2 For the unbounded matrix multiply through by R3
1 to avoid the difficulties arising from R1 " 1.
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For the unbounded matrix, we multiply the second derivatives in (71) through by R3
1 (recall footnote 2)

and let c ¼ 0, k1 ¼ 1, Dŵwð1Þ ¼ 0 (no residual stress). In particular, stability to non-symmetric perturbations

requires that

k2
0 D~uu=qsr

k0 � 1

q
; 0

� ��
þ 2D~vv=qsh

k0 � 1

q
; 0

� �	
> 0:

For the interface force law given by (64), this amounts to requiring that k0 < 1þ qð1þ 2gÞ. Thus, the
appearance of unstable, spherically symmetric equilibrium states to non-symmetric perturbations can be

delayed by increasing interfacial shear stiffness ðgÞ but not eliminated.

Results for the infinitesimally deformed power law matrix composite sphere directly parallel those for

the finitely deformed hyperelastic matrix composite sphere. The potential energy for the infinitesimally

deformed composite sphere may be obtained by substituting the variable C ¼ ðk � 1Þ=ey ¼ e=ey in (68) and

expanding in a series in ey retaining only terms linear in ey . As was done previously, we assume the
quantities C and ey=q are finite for infinitesimal ey . The result, which may be compared with (36) the po-

tential energy for spherically symmetric deformations, is given by

bUUðue;xeÞ ¼ cðC0 þ ueÞ
Z C0þue

cðC0þueÞ

ŵwðCÞ
C2

dC þ 3cey

Z C0þue

s0r C
ey
q

� �
dC � 3rceyðC0 þ ueÞ

þ 1

2
cq�1ey D~uu=qsr C0

ey
q
; 0

� ��
þ 2D~vv=qsh C0

ey
q
; 0

� �	
x2

e ; ð72Þ

where ue;xe are perturbations normalized with respect to ey and strain energy ŵw is given by (20). It is not

difficult to show that the vanishing of the derivatives Due
bUUðue; 0Þ;Dxe

bUUð0;xeÞ are equivalent to the

equation for continuing spherically symmetric equilibrium, and the equation governing the rigid body

mode, respectively. The second derivative of (72) D2
ue
bUUð0; 0Þ is given by (37)2, (30) and (31). The derivative

D2
xe
bUUð0; 0Þ leads to the local stability condition

D~uu=qsrðe0=q; 0Þ þ 2D~vv=qshðe0=q; 0Þ > 0; ð73Þ

which, for the interface force law (64), is satisfied when e0=q < 1þ 2g.

4. Conclusions

In this paper, we have focused on spherically symmetric and non-symmetric bifurcation and stability

phenomena associated with cavity nucleation by interfacial separation in a power law matrix composite

sphere deforming at infinitesimal strain. The results obtained are applicable for the metallic material matrix

provided a continuum description of the plastically deforming matrix remains valid for the composite

sphere and, if we utilize the results up to initial bifurcation only. Owing to the assumed hyperelastic
constitutive relation, predictions based on this model beyond critical loads are invalid due to the absence of

a linear elastic unloading regime. Treatment of the non-symmetric problem beyond initial bifurcation

would cause additional difficulties, other than the ones already described, owing for the need to employ an

incremental flow theory for non-proportional loading in the post bifurcation regime.

Simple formulae for the critical loads required to initiate spherically symmetric and non-symmetric

bifurcation have been obtained. It is physically reasonable to associate the critical load for non-symmetric

bifurcation with the nucleation load. This is because non-symmetric bifurcation exists for all parameter

values and its attainment signals the onset of unstable spherically symmetric equilibrium states. The li-
nearized bifurcation analysis carried out in the second part of the paper suggests that the non-symmetric

bifurcation point is a pitchfork. A number of global portraits consistent with this are then possible
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including ductile decohesion accompanied by a gradual rigid body displacement of the inclusion and brittle

decohesion accompanied by an abrupt displacement of the inclusion within a larger cavity. Either of these

scenarios, as well as other possibilities, may reasonably be associated with the nucleation event. Further-

more, the critical load (66)2, for non-symmetric bifurcation, has many of the properties we normally as-
sociate with nucleation. Namely, a critical load that (i) increases with increasing force length parameter q
and decreasing yield strain ey , (ii) increases with increasing strain-hardening exponent, (iii) has a size effect.

By (iii) we mean that the inclusion radius enters into the critical load. To see this recall that the interface

force law (33) is a function of ðk0 � 1Þ=q and k0 � 1 is the interface displacement normalized with respect to

the inclusion radius ðR0Þ. Then R0q ð¼ dÞ is a constitutive characteristic of the interface with the dimensions

of length and q is the ratio of this property and the inclusion radius. Therefore, (66)2 implies that larger

inclusions will nucleate cavities prior to smaller ones, a fact which has been observed experimentally (Argon

and Im, 1975; Goods and Brown, 1979; Fisher and Gurland, 1981a). Consider now the critical boundary
circumferential strain for the finite sphere with smooth interface. Then e�1 ¼ ce�0 ¼ cq which is given by

Cd=R0. Associating this quantity with the nucleation strain, we find that e�1 (i) increases with increasing

characteristic length parameter, (ii) decreases with increasing inclusion radius at fixed concentration and

(iii) is independent of interface strength and matrix constitutive characteristics. Property (iii), which is not

generally shared by other definitions of nucleation strain, is in large part due to the constraint of incom-

pressibility and the specific geometry and loading considered. These aspects allow for the determination of

the strain up to a multiplicative constant (the interface circumferential strain/normalized interface sepa-

ration e0). Furthermore, because nucleation strain is here defined to be that strain at which non-symmetric
deformation initiates it is to be expected that interfacial shear will strongly effect e�1.
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